Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 126802    DOI: 10.1088/1674-1056/ac9041

Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect

Xue Zhao(赵雪)1 and Jin-Wu Jiang(江进武)1,2,†
1 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China;
2 Zhejiang Laboratory, Hangzhou 311100, China
Abstract  The yttria-stabilized zirconia (YSZ) is a famous thermal barrier coating material to protect hot-end components of an engine. As a characteristic feature of the YSZ, the surface roughness shall play an important role in the interface thermal conductance between the YSZ and gas, considering that the gas is typically at an extremely high temperature. We investigate the effect of the surface roughness on the thermal conductance of the YSZ-gas interface with surface roughness described by nanoscale pores on the surface of the YSZ. We reveal two competitive mechanisms related to the microstructure of the pore, i.e., the actual contact area effect and the confinement effect. The increase of the pore depth will enlarge the actual contact area between the YSZ and gas, leading to enhancement of the solid-gas interface thermal conductance. In contrast to the positive actual contact area effect, the geometry-induced confinement effect greatly reduces the interface thermal conductance. These findings shall offer some fundamental understandings for the microscopic mechanisms of the YSZ-gas interface thermal conductance.
Keywords:  interface thermal conductance      thermal barrier coating      solid-gas interface      confinement effect  
Received:  20 June 2022      Revised:  10 August 2022      Accepted manuscript online:  08 September 2022
PACS:  68.35.Ct (Interface structure and roughness)  
  44.10.+i (Heat conduction)  
  81.05.Mh (Cermets, ceramic and refractory composites)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11822206 and 12072182), the Innovation Program of the Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-09-E00019), the Key Research Project of Zhejiang Laboratory, and the National Supercomputing Center in Zhengzhou (Grant No. 2021PE0AC02).
Corresponding Authors:  Jin-Wu Jiang     E-mail:

Cite this article: 

Xue Zhao(赵雪) and Jin-Wu Jiang(江进武) Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect 2022 Chin. Phys. B 31 126802

[1] Guo S, Tanaka Y and Kagawa Y 2007 J. Eur. Ceram. Soc. 27 3425
[2] Padture N P, Gell M and Jordan E H 2002 Science 296 280
[3] Clarke D R, Oechsner M and Padture N P 2012 MRS Bull. 37 891
[4] Wang L, Zhong X, Zhao Y, Yang J, Tao S, Zhang W, Wang Y and Sun X 2014 Int. J. Heat Mass Transfer 79 954
[5] Koolloos M, Van Liempd G and Houben J 1998 Surf. Eng. 14 144
[6] Unal O, Mitchell T E and Heuer A H 1994 J. Am. Ceram. Soc. 77 984
[7] Hass D, Slifka A J and Wadley H 2001 Acta Mater. 49 973
[8] Strangman T E 1985 Thin Solid Films 127 93
[9] Schulz U, Oettel H and Bunk W 1996 Int. J. Mater. Res. 87 488
[10] Zhao H, Levi C G and Wadley H N 2014 Surf. Coat. Technol. 251 74
[11] Zhang G, Fan X, Xu R, Su L and Wang T 2018 Ceram. Int. 44 12655
[12] Litovskii E Y 1972 J. Eng. Phys. 22 768
[13] Nicholls J R, Lawson K, Johnstone A and Rickerby D 2002 Surf. Coat. Technol. 151 383
[14] Renteria A F, Saruhan B, Schulz U, Raetzer-Scheibe H J, Haug J and Wiedenmann A 2006 Surf. Coat. Technol. 201 2611
[15] Kapitza P 1941 Phys. Rev. 60 354
[16] Chen S, Moore A L, Cai W, Suk J W, An J, Mishra C, Amos C, Magnuson C W, Kang J, Shi L and Ruoff R S 2011 ACS Nano 5 321
[17] Cheng C, Fan W, Cao J, Ryu S G, Ji J, Grigoropoulos C P and Wu J 2011 ACS Nano 5 10102
[18] Wang S, Xu J L and Zhang L Y 2017 Acta Phys. Sin. 67 204704 (in Chinese)
[19] Wang T Y, Zhang G X and Li D Y 2021 Chin. Phys. B 30 128101
[20] Hu S, Zhao C Y and Gu X 2022 Chin. Phys. B 31 056301
[21] Markvoort A J, Hilbers P and Nedea S 2005 Phys. Rev. E 71 066702
[22] Liang Z and Keblinski P 2014 Int. J. Heat Mass Transfer 78 161
[23] Rabani R, Heidarinejad G, Harting J and Shirani E 2020 Int. J. Therm. Sci. 153 106394
[24] Zhang C, Deng Z and Chen Y 2014 Int. J. Heat Mass Transfer 70 322
[25] Liang Z, Evans W and Keblinski P 2013 Phys. Rev. E 87 022119
[26] Giri A, Braun J L and Hopkins P E 2016 J. Phys. Chem. C 120 24847
[27] Day B S and Morris J R 2005 J. Chem. Phys. 122 234714
[28] Liang Z, Evans W, Desai T and Keblinski P 2013 Appl. Phys. Lett. 102 061907
[29] Zhao S, Shao C, Zahiri S, Zhao C and Bao H 2018 J. Shanghai Jiaotong Univ. (Sci.) 23 38
[30] Lin T, Li X and Cheng P 2018 Int. J. Heat Mass Transfer 97 118
[31] Song Z, Cui Z, Cao Q, Liu Y and Li J 2021 J. Mol. Liq. 337 116052
[32] Cao B Y, Chen M and Guo Z Y 2004 Chin. Phys. Lett. 21 1777
[33] Mei T, Chen Z X, Yang L, Wang K and Miao R C 2019 Acta Phys. Sin. 68 094701 (in Chinese)
[34] Hass D, Slifka A J and Wadley H 2001 Acta Mater. 49 973
[35] Buckingham R A 1938 Proc. R. Soc. London A 168 264
[36] Schelling P K, Phillpot S R and Wolf D 2001 J. Am. Ceram. Soc. 84 1609
[37] Rappé A K, Casewit C J, Colwell K, Goddard III W A and Skiff W M 1992 J. Am. Ceram. Soc. 114 10024
[38] Lorentz H A 1881 Ann. Phys. (Berlin) 248 127
[39] Berthelot D 1898 Comptes Rendus Hebdomadaires des Séances de L'Académie des Sciences 126 1703
[40] Nosé S 1984 J. Chem. Phys. 81 511
[41] Hoover W G 1985 Phys. Rev. A 31 1695
[42] Plimpton S 1995 J. Comput. Phys. 117 1
[43] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012
[44] Stoner R and Maris H 1993 Phys. Rev. B 48 16373
[45] Bond J W, Watson K M, Welch J A and Fu X L 1965 Atomic Theory of Gas Dynamics (Beijing: Science Press) pp. 10-15 (in Chinese)
[46] Zhang B J, Wang B X and Zhao C Y 2014 Int. J. Heat Mass Transfer 73 59
[47] Bao H, Yan C, Wang B, Fang X, Zhao C Y and Ruan X 2017 Sol. Energ. Mater. Sol. Cells 168 78
[1] Band structure of silicon and germanium thin films based on first principles
Xue-Ke Wu(吴学科), Wei-Qi Huang(黄伟其), Zhong-Mei Huang(黄忠梅), Chao-Jian Qin(秦朝建), Tai-Ge Dong(董泰阁), Gang Wang(王刚), Yan-Lin Tang(唐延林). Chin. Phys. B, 2017, 26(3): 037302.
[2] Time-dependent evolution process of Sb2Te3 from nanoplates to nanorods and their Raman scattering properties
Xiu-Qing Meng(孟秀清), Ning Tang(汤宁), Mian-Zeng Zhong(钟绵增), Hui-Qun Ye(叶慧群), Yun-Zhang Fang(方允樟). Chin. Phys. B, 2016, 25(10): 107105.
[3] Silicon nanoparticles:Preparation, properties, and applications
Chang Huan (常欢), Sun Shu-Qing (孙树清). Chin. Phys. B, 2014, 23(8): 088102.
[4] Introduction to ChinaNANO 2013
Wei Zhi-Xiang (魏志祥), Zhu Xing (朱星). Chin. Phys. B, 2014, 23(8): 088101.
[5] Tight-binding study of quantum transport in nanoscale GaAs Schottky MOSFET
Zahra Ahangari, Morteza Fathipour. Chin. Phys. B, 2013, 22(9): 098502.
[6] Photoluminescence and transmission spectra of nanocrystalline GaAs1-xSbx embedded in silica films
Liu Fa-Min (刘发民), Zhang Li-De (张立德), Li Guo-Hua (李国华). Chin. Phys. B, 2005, 14(10): 2145-2148.
No Suggested Reading articles found!