Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096801    DOI: 10.1088/1674-1056/aba27c
RAPID COMMUNICATION Prev   Next  

Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness

Shuya Xing(邢淑雅)1, Le Lei(雷乐)1, Haoyu Dong(董皓宇)1, Jianfeng Guo(郭剑峰)1, Feiyue Cao(曹飞跃)1, Shangzhi Gu(顾尚志)1, Sabir Hussain2,3, Fei Pang(庞斐)1, Wei Ji(季威)1, Rui Xu(许瑞)1, Zhihai Cheng(程志海)1
1 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China;
2 CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100039, China
Abstract  Group-V elemental nanofilms were predicted to exhibit interesting physical properties such as nontrivial topological properties due to their strong spin-orbit coupling, the quantum confinement, and surface effect. It was reported that the ultrathin Sb nanofilms can undergo a series of topological transitions as a function of the film thickness h: from a topological semimetal (h>7.8 nm) to a topological insulator (7.8 nm > h > 2.7 nm), then a quantum spin Hall (QSH) phase (2.7 nm > h > 1.0 nm) and a topological trivial semiconductor (h< 1.0 nm). Here, we report a comprehensive investigation on the epitaxial growth of Sb nanofilms on highly oriented pyrolytic graphite (HOPG) substrate and the controllable thermal desorption to achieve their specific thickness. The morphology, thickness, atomic structure, and thermal-strain effect of the Sb nanofilms were characterized by a combination study of scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). The realization of Sb nanofilms with specific thickness paves the way for the further exploring their thickness-dependent topological phase transitions and exotic physical properties.
Keywords:  epitaxial growth      antimony films      scanning tunneling microscope (STM)      thermal desorption  
Received:  24 May 2020      Revised:  23 June 2020      Accepted manuscript online:  03 July 2020
PACS:  68.35.bg (Semiconductors)  
  68.55.-a (Thin film structure and morphology)  
  68.43.Vx (Thermal desorption)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21622304, 61674045, 11604063, and 61911540074), the National Key Research and Development Program of China (Grant No. 2016YFA0200700), the Strategic Priority Research Program and Key Research Program of Frontier Sciences and Instrument Developing Project (Chinese Academy of Sciences, CAS) (Grant Nos. XDB30000000, QYZDB-SSW-SYS031, and YZ201418). Z. H. Cheng was supported by Distinguished Technical Talents Project and Youth Innovation Promotion Association CAS, the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 18XNLG01).
Corresponding Authors:  Fei Pang, Zhihai Cheng     E-mail:  feipang@ruc.edu.cn;zhihaicheng@ruc.edu.cn

Cite this article: 

Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海) Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness 2020 Chin. Phys. B 29 096801

[1] Zhang S L, Guo S Y, Chen Z F, Wang Y L, Gao H J, Gomez-Herrero J, Ares P, Zamora F, Zhu Z and Zeng H B 2018 Chem. Soc. Rev. 47 982
[2] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L and Wu K H 2016 Nat. Chem. 8 563
[3] Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J and Cao G Y 2017 Adv. Mater. 29 1606046
[4] Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[5] Zhang J L, Zhao S T, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z Y and Chen W 2016 Nano Lett. 16 4903
[6] Lu N D, Wang L F, Li L and Liu M 2017 Chin. Phys. B 26 036804
[7] Yang J and Lu Y R 2017 Chin. Phys. B 26 034201
[8] Huang X C, Guan J Q, Lin Z J, Liu B, Xing S Y, Wang W H and Guo J D 2017 Nano Lett. 17 4619
[9] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K and Gao H J 2017 Adv. Mater. 29 1605407
[10] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer R and Claessen R 2017 Science 357 287
[11] Li K L, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L and Chen X H 2014 Nat. Nanotechnol 9 372
[12] Sugawara K, Sato T, Souma S, Takahashi T, Arai M and Sasaki T 2006 Phys. Rev. Lett. 96 046411
[13] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava J R and Hasan M Z 2009 Science 323 919
[14] Seo J, Roushan P, Beidenkopf H, Hor Y S, Cava J R and Yazdani A 2010 Nature 466 343
[15] Zhang P F, Liu Z, Duan W H, Liu F and Wu J 2012 Phys. Rev. B 85 201410
[16] Ares P, Zamora F and Gomez-Herrero J 2017 Acs Photon. 4 600
[17] Gibaja C, Rodriguez-San-Miguel D, Ares P, Gomez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A, Abellan G and Zamora F 2016 Angew. Chem. Int. Edit 55 14345
[18] Sun X, Lu Z H, Xiang Y, Wang Y P, Shi J, Wang G C, Washington M A and Lu M T 2018 ACS Nano 12 6100
[19] Dai X Y, Jin G Q, Dong J Q, Wang C B, Zhao X, Chu Y P, Xi P C, Deng W H, Zhang H M and He Y 2011 Acta Phys. Sin. 60 065101 (in Chinese)
[20] Qiu Y F, Du H W and Wang B 2011 Acta Phys. Sin. 60 036801 (in Chinese)
[21] Panahi N, Hosseinnejad M T, Shirazi M and Ghoranneviss M 2016 Chin. Phys. Lett. 33 066802
[22] Liu S J, He Y F, Wei H Y, Qiu P, Song W M, An Y L, Rehman A, Peng M Z and Zheng X H 2019 Chin. Phys. Lett. 28 026801
[23] Lan W, Tang G M, Cao W L, Liu X Q and Wang Y Y 2009 Acta Phys. Sin. 58 8501 (in Chinese)
[24] Yu L H, Xue A J, Dong S T and Xu J H 2010 Acta Phys. Sin. 59 4150 (in Chinese)
[25] Sun B, Chang H D, Lu L, Liu H G and Wu D X 2012 Chin. Phys. Lett. 29 036102
[26] Su S J, Wang W and Zhang G Z 2011 Acta Phys. Sin. 60 028101 (in Chinese)
[27] Lei T, Liu C, Zhao J L, Li J M, Li Y P, Wang J O, Wu R, Qian H J, Wang H Q and Ibrahim K 2016 J. Appl. Phys. 119 015302
[28] Fortin-Deschenes M, Waller O, Mentes T O, Locatelli A, Mukherjee S, Genuzio F, Levesque P L, Hebert A, Martel R and Moutanabbir O 2017 Nano Lett. 17 4970
[29] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133
[30] Yao G G, Luo Z Y, Pan F, Xu W T, Feng P Y and Wang X S 2013 Sci. Rep. 3 2010
[31] Kim S H, K Jin K H, Park J, Kim J S, Jhi S H and Yeom H W 2016 Sci. Rep. 6 33193
[32] Luo Z F, Wu Z M, Xu X D, Wang T and Jiang X D 2011 Acta Phys. Sin. 60 067302 (in Chinese)
[33] Meng X Q, Fang Y Z and Wu F M 2012 Chin. Phys. Lett. 29 016801
[34] Liu X J, Cao W Q, Huang Z H, Yuan J, Fang X Y and Gao M S 2015 Chin. Phys. Lett. 32 036802
[35] Yang J J, Fang Q Q, Du W H, Zhang K K and Dong D S 2018 Chin. Phys. B 27 037804
[36] Zhu C F, Sha X, Chu X Y, Li J H, Xu M Z, Jin F J and Xu Z K 2018 Chin. Phys. B 27 027803
[37] He X M, Chen Z M and Li L B 2015 Chin. Phys. Lett. 32 036801
[38] Shi X M, Wang G Y, Wang R F, Zhou X Y, Xu J T, Tang J and Ang R 2018 Chin. Phys. B 27 047204
[39] Tan M R, Liu Q H, Sui N, Kang Z H, Zhang L Q, Zhang H Z, Wang W Q, Zhou Q and Wang Y H 2019 Chin. Phys. B 28 056106
[40] Shen K C, Hua C Q, Liang Z F, Wang Y, Sun H L, Hu J P, Zhang H, Li H Y, Jiang Z, Huang H, Wang P, Sun Z, Wahlström E, Lu Y H and Song F 2019 ACS Appl. Electron. Mater. 1 1817
[41] Song F, Wells J W, Jiang Z, Saxegaard M and Wahlström 2015 EACS Appl. Mater. Interfaces 7 8525
[42] Yang Z Q, Jia J F and Dong Qian D 2016 Chin. Phys. B 25 117312
[43] Wang G X, Pandey P and Karna S P 2015 Acs Appl. Mater. Inter 7 11490
[44] Märkl T, Kowalczyk P J, Ster M L, Mahajan I V, Pirie H, Ahmed Z, Bian G, Wang X, Chiang T C and Brown S A 2018 2D Mater. 5 011002
[45] Stegemann B, Ritter C, Kaiser B and Rademann K 2004 J. Phys. Chem. B 108 14292
[46] Kaiser B, Stegemann B, Kaukel H and Rademann K 2002 Surf. Sci. 496 L18-L22
[47] Shen K C, Hua C Q, Liang Z F, Wang Y, Sun H L, Hu J P, Zhang H, Li H Y, Jiang Z, Huang H, Wang P, Sun Z, Wahlstrom E, Lu Y H and Son F 2019 ACS Appl. Electron. Mater 1 1817
[48] Feng X X, Liu N X, Zhang N, Wei T B, Wang J X and Li J M 2014 Chin. Phys. Lett. 31 056801
[49] Luo J X, Chen J, Chai Z, Lv K, He W W, Yang Y and Wang X 2014 Chin. Phys. Lett. 31 126601
[50] Liu Y, Li Y Y, Rajput S, Gilks D, Lari L, Galindo P L, Weinert M, Lazarov V K and Li L 2014 Nat. Phys. 10 294
[1] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[2] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[3] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[4] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[5] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[6] High crystalline quality of SiGe fin fabrication with Si-rich composition area using replacement fin processing
Ying Zan(昝颖), Yong-Liang Li(李永亮), Xiao-Hong Cheng(程晓红), Zhi-Qian Zhao(赵治乾), Hao-Yan Liu(刘昊炎), Zhen-Hua Hu(吴振华), An-Yan Du(都安彦), Wen-Wu Wang(王文武). Chin. Phys. B, 2020, 29(8): 087303.
[7] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[8] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
[9] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[10] Properties of n-Ge epilayer on Si substrate with in-situ doping technology
Shi-Hao Huang(黄诗浩), Cheng Li(李成), Cheng-Zhao Chen(陈城钊), Chen Wang(王尘), Wen-Ming Xie(谢文明), Shu-Yi Lin(林抒毅), Ming Shao(邵明), Ming-Xing Nie(聂明星), Cai-Yun Chen(陈彩云). Chin. Phys. B, 2016, 25(6): 066601.
[11] Control of epitaxial growth at a-Si: H/c-Si heterointerface by the working pressure in PECVD
Yanjiao Shen(沈艳娇), Jianhui Chen(陈剑辉), Jing Yang(杨静), Bingbing Chen(陈兵兵), Jingwei Chen(陈静伟), Feng Li(李峰), Xiuhong Dai(代秀红), Haixu Liu(刘海旭), Ying Xu(许颖), Yaohua Mai(麦耀华). Chin. Phys. B, 2016, 25(11): 118801.
[12] Fabrication and properties of silicene and silicene–graphene layered structures on Ir (111)
Meng Lei (孟蕾), Wang Ye-Liang (王业亮), Zhang Li-Zhi (张理智), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(8): 086803.
[13] Structural and physical properties of BiFeO3 thin films epitaxially grown on SrTiO3 (001) and polar (111) surfaces
He Shu-Min (贺树敏), Liu Guo-Lei (刘国磊), Zhu Da-Peng (朱大鹏), Kang Shi-Shou (康仕寿), Chen Yan-Xue (陈延学), Yan Shi-Shen (颜世申), Mei Liang-Mo (梅良模). Chin. Phys. B, 2014, 23(3): 036801.
[14] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
Chen Cheng (陈成), Chen Zheng (陈铮), Zhang Jing (张静), Yang Tao (杨涛), Du Xiu-Juan (杜秀娟 ). Chin. Phys. B, 2012, 21(11): 118103.
[15] Synthesis and characterization of axially periodic Zn2SnO4 dendritic nanostructures
Shen Jun(沈俊), Ge Bing-Hui(葛炳辉), Chu Wei-Guo(褚卫国), Luo Shu-Dong(罗述东), Zhang Zeng-Xing(张增星), Liu Dong-Fang(刘东方), Liu Li-Feng(刘利峰), Ma Wen-Jun(马文君), Ren Yan(任彦), Xiang Yan-Juan(向彦娟), Wang Chao-Ying(王超英), Wang Gang(王刚), and Zhou Wei-Ya(周维亚) . Chin. Phys. B, 2008, 17(6): 2184-2190.
No Suggested Reading articles found!