|
|
Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness |
Shuya Xing(邢淑雅)1, Le Lei(雷乐)1, Haoyu Dong(董皓宇)1, Jianfeng Guo(郭剑峰)1, Feiyue Cao(曹飞跃)1, Shangzhi Gu(顾尚志)1, Sabir Hussain2,3, Fei Pang(庞斐)1, Wei Ji(季威)1, Rui Xu(许瑞)1, Zhihai Cheng(程志海)1 |
1 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China; 2 CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; 3 University of Chinese Academy of Sciences, Beijing 100039, China |
|
|
Abstract Group-V elemental nanofilms were predicted to exhibit interesting physical properties such as nontrivial topological properties due to their strong spin-orbit coupling, the quantum confinement, and surface effect. It was reported that the ultrathin Sb nanofilms can undergo a series of topological transitions as a function of the film thickness h: from a topological semimetal (h>7.8 nm) to a topological insulator (7.8 nm > h > 2.7 nm), then a quantum spin Hall (QSH) phase (2.7 nm > h > 1.0 nm) and a topological trivial semiconductor (h< 1.0 nm). Here, we report a comprehensive investigation on the epitaxial growth of Sb nanofilms on highly oriented pyrolytic graphite (HOPG) substrate and the controllable thermal desorption to achieve their specific thickness. The morphology, thickness, atomic structure, and thermal-strain effect of the Sb nanofilms were characterized by a combination study of scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). The realization of Sb nanofilms with specific thickness paves the way for the further exploring their thickness-dependent topological phase transitions and exotic physical properties.
|
Received: 24 May 2020
Revised: 23 June 2020
Accepted manuscript online: 03 July 2020
|
PACS:
|
68.35.bg
|
(Semiconductors)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
68.43.Vx
|
(Thermal desorption)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21622304, 61674045, 11604063, and 61911540074), the National Key Research and Development Program of China (Grant No. 2016YFA0200700), the Strategic Priority Research Program and Key Research Program of Frontier Sciences and Instrument Developing Project (Chinese Academy of Sciences, CAS) (Grant Nos. XDB30000000, QYZDB-SSW-SYS031, and YZ201418). Z. H. Cheng was supported by Distinguished Technical Talents Project and Youth Innovation Promotion Association CAS, the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 18XNLG01). |
Corresponding Authors:
Fei Pang, Zhihai Cheng
E-mail: feipang@ruc.edu.cn;zhihaicheng@ruc.edu.cn
|
Cite this article:
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海) Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness 2020 Chin. Phys. B 29 096801
|
[1] |
Zhang S L, Guo S Y, Chen Z F, Wang Y L, Gao H J, Gomez-Herrero J, Ares P, Zamora F, Zhu Z and Zeng H B 2018 Chem. Soc. Rev. 47 982
|
[2] |
Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L and Wu K H 2016 Nat. Chem. 8 563
|
[3] |
Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J and Cao G Y 2017 Adv. Mater. 29 1606046
|
[4] |
Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685
|
[5] |
Zhang J L, Zhao S T, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z Y and Chen W 2016 Nano Lett. 16 4903
|
[6] |
Lu N D, Wang L F, Li L and Liu M 2017 Chin. Phys. B 26 036804
|
[7] |
Yang J and Lu Y R 2017 Chin. Phys. B 26 034201
|
[8] |
Huang X C, Guan J Q, Lin Z J, Liu B, Xing S Y, Wang W H and Guo J D 2017 Nano Lett. 17 4619
|
[9] |
Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K and Gao H J 2017 Adv. Mater. 29 1605407
|
[10] |
Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer R and Claessen R 2017 Science 357 287
|
[11] |
Li K L, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L and Chen X H 2014 Nat. Nanotechnol 9 372
|
[12] |
Sugawara K, Sato T, Souma S, Takahashi T, Arai M and Sasaki T 2006 Phys. Rev. Lett. 96 046411
|
[13] |
Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava J R and Hasan M Z 2009 Science 323 919
|
[14] |
Seo J, Roushan P, Beidenkopf H, Hor Y S, Cava J R and Yazdani A 2010 Nature 466 343
|
[15] |
Zhang P F, Liu Z, Duan W H, Liu F and Wu J 2012 Phys. Rev. B 85 201410
|
[16] |
Ares P, Zamora F and Gomez-Herrero J 2017 Acs Photon. 4 600
|
[17] |
Gibaja C, Rodriguez-San-Miguel D, Ares P, Gomez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A, Abellan G and Zamora F 2016 Angew. Chem. Int. Edit 55 14345
|
[18] |
Sun X, Lu Z H, Xiang Y, Wang Y P, Shi J, Wang G C, Washington M A and Lu M T 2018 ACS Nano 12 6100
|
[19] |
Dai X Y, Jin G Q, Dong J Q, Wang C B, Zhao X, Chu Y P, Xi P C, Deng W H, Zhang H M and He Y 2011 Acta Phys. Sin. 60 065101 (in Chinese)
|
[20] |
Qiu Y F, Du H W and Wang B 2011 Acta Phys. Sin. 60 036801 (in Chinese)
|
[21] |
Panahi N, Hosseinnejad M T, Shirazi M and Ghoranneviss M 2016 Chin. Phys. Lett. 33 066802
|
[22] |
Liu S J, He Y F, Wei H Y, Qiu P, Song W M, An Y L, Rehman A, Peng M Z and Zheng X H 2019 Chin. Phys. Lett. 28 026801
|
[23] |
Lan W, Tang G M, Cao W L, Liu X Q and Wang Y Y 2009 Acta Phys. Sin. 58 8501 (in Chinese)
|
[24] |
Yu L H, Xue A J, Dong S T and Xu J H 2010 Acta Phys. Sin. 59 4150 (in Chinese)
|
[25] |
Sun B, Chang H D, Lu L, Liu H G and Wu D X 2012 Chin. Phys. Lett. 29 036102
|
[26] |
Su S J, Wang W and Zhang G Z 2011 Acta Phys. Sin. 60 028101 (in Chinese)
|
[27] |
Lei T, Liu C, Zhao J L, Li J M, Li Y P, Wang J O, Wu R, Qian H J, Wang H Q and Ibrahim K 2016 J. Appl. Phys. 119 015302
|
[28] |
Fortin-Deschenes M, Waller O, Mentes T O, Locatelli A, Mukherjee S, Genuzio F, Levesque P L, Hebert A, Martel R and Moutanabbir O 2017 Nano Lett. 17 4970
|
[29] |
Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133
|
[30] |
Yao G G, Luo Z Y, Pan F, Xu W T, Feng P Y and Wang X S 2013 Sci. Rep. 3 2010
|
[31] |
Kim S H, K Jin K H, Park J, Kim J S, Jhi S H and Yeom H W 2016 Sci. Rep. 6 33193
|
[32] |
Luo Z F, Wu Z M, Xu X D, Wang T and Jiang X D 2011 Acta Phys. Sin. 60 067302 (in Chinese)
|
[33] |
Meng X Q, Fang Y Z and Wu F M 2012 Chin. Phys. Lett. 29 016801
|
[34] |
Liu X J, Cao W Q, Huang Z H, Yuan J, Fang X Y and Gao M S 2015 Chin. Phys. Lett. 32 036802
|
[35] |
Yang J J, Fang Q Q, Du W H, Zhang K K and Dong D S 2018 Chin. Phys. B 27 037804
|
[36] |
Zhu C F, Sha X, Chu X Y, Li J H, Xu M Z, Jin F J and Xu Z K 2018 Chin. Phys. B 27 027803
|
[37] |
He X M, Chen Z M and Li L B 2015 Chin. Phys. Lett. 32 036801
|
[38] |
Shi X M, Wang G Y, Wang R F, Zhou X Y, Xu J T, Tang J and Ang R 2018 Chin. Phys. B 27 047204
|
[39] |
Tan M R, Liu Q H, Sui N, Kang Z H, Zhang L Q, Zhang H Z, Wang W Q, Zhou Q and Wang Y H 2019 Chin. Phys. B 28 056106
|
[40] |
Shen K C, Hua C Q, Liang Z F, Wang Y, Sun H L, Hu J P, Zhang H, Li H Y, Jiang Z, Huang H, Wang P, Sun Z, Wahlström E, Lu Y H and Song F 2019 ACS Appl. Electron. Mater. 1 1817
|
[41] |
Song F, Wells J W, Jiang Z, Saxegaard M and Wahlström 2015 EACS Appl. Mater. Interfaces 7 8525
|
[42] |
Yang Z Q, Jia J F and Dong Qian D 2016 Chin. Phys. B 25 117312
|
[43] |
Wang G X, Pandey P and Karna S P 2015 Acs Appl. Mater. Inter 7 11490
|
[44] |
Märkl T, Kowalczyk P J, Ster M L, Mahajan I V, Pirie H, Ahmed Z, Bian G, Wang X, Chiang T C and Brown S A 2018 2D Mater. 5 011002
|
[45] |
Stegemann B, Ritter C, Kaiser B and Rademann K 2004 J. Phys. Chem. B 108 14292
|
[46] |
Kaiser B, Stegemann B, Kaukel H and Rademann K 2002 Surf. Sci. 496 L18-L22
|
[47] |
Shen K C, Hua C Q, Liang Z F, Wang Y, Sun H L, Hu J P, Zhang H, Li H Y, Jiang Z, Huang H, Wang P, Sun Z, Wahlstrom E, Lu Y H and Son F 2019 ACS Appl. Electron. Mater 1 1817
|
[48] |
Feng X X, Liu N X, Zhang N, Wei T B, Wang J X and Li J M 2014 Chin. Phys. Lett. 31 056801
|
[49] |
Luo J X, Chen J, Chai Z, Lv K, He W W, Yang Y and Wang X 2014 Chin. Phys. Lett. 31 126601
|
[50] |
Liu Y, Li Y Y, Rajput S, Gilks D, Lari L, Galindo P L, Weinert M, Lazarov V K and Li L 2014 Nat. Phys. 10 294
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|