Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 035203    DOI: 10.1088/1674-1056/ac3390

Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell

Hong-Yu Guo(郭宏宇)1,2,†, Tao Cheng(程涛)1,2, Jing Li(李景)3, and Ying-Jun Li(李英骏)1,2,‡
1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China;
2 School of Science, China University of Mining and Technology, Beijing 100083, China;
3 Beijing Aeronautical Technology Research Center, Beijing 100076, China
Abstract  Rayleigh—Taylor instability (RTI) of finite-thickness shell plays an important role in deep understanding the characteristics of shell deformation and material mixing. The RTI of a finite-thickness fluid layer is studied analytically considering an arbitrary perturbation phase difference on the two interfaces of the shell. The third-order weakly nonlinear (WN) solutions for RTI are derived. It is found the main feature (bubble-spike structure) of the interface is not affected by phase difference. However, the positions of bubble and spike are sensitive to the initial phase difference, especially for a thin shell (kd<1), which will be detrimental to the integrity of the shell. Furthermore, the larger phase difference results in much more serious RTI growth, significant shell deformation can be obtained in the WN stage for perturbations with large phase difference. Therefore, it should be considered in applications where the interface coupling and perturbation phase effects are important, such as inertial confinement fusion.
Keywords:  Rayleigh—Taylor instability      interface coupling effect      inertial confinement fusion  
Received:  29 July 2021      Revised:  04 October 2021      Accepted manuscript online:  27 October 2021
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2021YQLX05), the National Natural Science Foundation of China (Grant No. 11974419), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA 25051000).
Corresponding Authors:  Hong-Yu Guo, Ying-Jun Li     E-mail:;

Cite this article: 

Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏) Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell 2022 Chin. Phys. B 31 035203

[1] Rayleigh L 1883 Proc. London Math. Soc. 14 170
[2] Taylor G 1950 Proc. R. Soc. Lond. A 201 192
[3] Chittenden J P and Jennings C A 2008 Phys. Rev. Lett. 101 055005
[4] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[5] Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K and Zhang W Y 2017 Sci. China-Phys. Mech. Astron. 60 055201
[6] Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
[7] Liu W H, Wang L F, Ye W H and He X T 2012 Phys. Plasmas 19 042705
[8] Wang L F, Wu J F, Fan Z F, et al. 2012 Phys. Plasmas 19 112706
[9] Lai H L, Xu A G, Zhang G C, et al. 2016 Phys. Rev. E 94 023106
[10] Zhang J, Wang L F, Ye W H, Wu J F, Guo H Y, Zhang W Y and He X T 2017 Phys. Plasmas 24 062703
[11] Xin J, Yan R, Wan Z H, Sun J, Zheng J, Zhang H, Aluie H and Betti R 2019 Phys. Plasmas 26 032703
[12] Mikaelian K O 1982 Phys. Rev. A 26 2140
[13] Mikaelian K O 1983 Phys. Rev. A 28 1637
[14] Guo H Y, Wang L F, Ye W H, et al. 2017 Chin. Phys. Lett. 34 075201
[15] Guo H Y, Wang L F, Ye W H, et al. 2017 Chin. Phys. B 26 125202
[16] Guo H Y, Wang L F, Ye W H, et al. 2018 Chin. Phys. B 27 025206
[17] Weis M R, Zhang P, Lau Y Y, et al. 2014 Phys. Plasmas 21 122708
[18] Velikovich A L and Schmit P F 2015 Phys. Plasmas 22 122711
[19] Plesset M S 1954 J. Appl. Phys. 25 96
[20] Wilkinson J P and Jacobs J W 2007 Phys. Fluids 19 124102
[21] Jacobs J W and Catton I 1988 J. Fluid Mech. 187 353
[22] Ding J C, Si T, Yang J M, et al. 2017 Phys. Rev. Lett. 119 014501
[23] Wang L F, Guo H Y, Wu J F, et al. 2014 Phys. Plasmas 21 122710
[24] Guo H Y, Wang L F, Ye W H, et al. 2017 Phys. Plasmas 24 112708
[25] Miles A R, Edwards M J, Blue B, et al. 2004 Phys. Plasmas 11 5507
[1] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[2] Analytical model for Rayleigh—Taylor instability in conical target conduction region
Zhong-Yuan Zhu(朱仲源), Yun-Xing Liu(刘云星), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(10): 105202.
[3] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[4] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[5] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[6] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[7] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[8] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[9] Enhanced ferroelectricity and ferromagnetism in Bi0.9Ba0.1FeO3/La2/3Sr1/3MnO3 heterostructure grown by pulsed laser deposition
Wen Xiao-Li (温晓莉), Chen Zhao (陈钊), Lin Xin (林鑫), Niu Li-Wei (牛利伟), Duan Meng-Meng (段萌萌), Zhang Yun-Jie (张云婕), Dong Xiang-Lei (董祥雷), Chen Chang-Le (陈长乐). Chin. Phys. B, 2014, 23(11): 117703.
[10] Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility
Wang Feng (王峰), Peng Xiao-Shi (彭晓世), Kang Dong-Guo (康洞国), Liu Shen-Ye (刘慎业), Xu Tao (徐涛). Chin. Phys. B, 2013, 22(11): 115204.
[11] An improved deconvolution method for X-ray coded imaging in inertial confinement fusion
Zhao Zong-Qing (赵宗清), He Wei-Hua (何卫华), Wang Jian (王剑), Hao Yi-Dan (郝轶丹), Cao Lei-Feng (曹磊峰), Gu Yu-Qiu (谷渝秋), Zhang Bao-Han (张保汉). Chin. Phys. B, 2013, 22(10): 104202.
[12] Emission spectrum from an Al/Mg tracer in the blow-off region of a radiatively ablated capsule
Pu Yu-Dong(蒲昱东), Chen Bo-Lun(陈伯伦), Zhang Lu(张璐), Yang Jia-Ming(杨家敏), Huang Tian-Xuan(黄天晅), and Ding Yong-Kun(丁永坤) . Chin. Phys. B, 2011, 20(9): 095203.
[13] Analysis of Ar line spectra from indirectly-driven implosion experiments on SGII facility
Pu Yu-Dong(蒲昱东),Zhang Ji-Yan(张继彦),Yang Jia-Min(杨家敏), Huang Tian-Xuan(黄天晅),and Ding Yong-Kun(丁永坤). Chin. Phys. B, 2011, 20(1): 015202.
No Suggested Reading articles found!