Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 128501    DOI: 10.1088/1674-1056/ab4e84
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High performance silicon-based GeSn p-i-n photodetectors for short-wave infrared application

Yue Zhao(赵越)1,2, Nan Wang(王楠)1,2, Kai Yu(余凯)1,2, Xiaoming Zhang(张晓明)3, Xiuli Li(李秀丽)1,2, Jun Zheng(郑军)1,2, Chunlai Xue(薛春来)1,2, Buwen Cheng(成步文)1,2, Chuanbo Li(李传波)3,4
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Opto-Electronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Science, Minzu University of China, Beijing 100081, China;
4 Optoelectronics Research Center, Minzu University of China, Beijing 100081, China
Abstract  An investigation of germanium-tin (GeSn) on silicon p-i-n photodetectors with a high-quality Ge0.94Sn0.06 absorbing layer is reported. The GeSn photodetector reached a responsivity as high as 0.45 A/W at the wavelength of 1550 nm and 0.12 A/W at the wavelength of 2 μm. A cycle annealing technology was applied to improve the quality of the epitaxial layer during the growth process by molecular beam epitaxy. A low dark-current density under 1 V reverse bias about 0.078 A/cm2 was achieved at room temperature. Furthermore, the GeSn photodetector could detect a wide spectrum region and the cutoff wavelength reached to about 2.3 μm. This work has great importance in silicon-based short-wave infrared detection.
Keywords:  GeSn alloy      molecular beam epitaxy      photodetector      cycle annealing  
Received:  04 September 2019      Revised:  27 September 2019      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  61.66.Dk (Alloys )  
  68.55.ag (Semiconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200500), the National Natural Science Foundation of China (Grant Nos. 61675195, 61934007, and 61974170), Opened Fund of the State Key Laboratory of Integrated Optoelectronics, China (Grant No. IOSKL2018KF17), and Beijing Natural Science Foundation, China (Grant No. 4162063).
Corresponding Authors:  Chuanbo Li     E-mail:  cbli@muc.edu.cn

Cite this article: 

Yue Zhao(赵越), Nan Wang(王楠), Kai Yu(余凯), Xiaoming Zhang(张晓明), Xiuli Li(李秀丽), Jun Zheng(郑军), Chunlai Xue(薛春来), Buwen Cheng(成步文), Chuanbo Li(李传波) High performance silicon-based GeSn p-i-n photodetectors for short-wave infrared application 2019 Chin. Phys. B 28 128501

[34] Huang B J, Lin J H, Cheng H H and Chang G E 2018 Opt. Lett. 43 1215
[1] Eckhardt C, Hummer K and Kresse G 2014 Phys. Rev. B 89 165201
[35] Zheng J, Liu Z, Xue C L, Li C B, Zuo Y H, Cheng B W and Wang Q M 2018 J. Semicond. 39 061006
[2] Du W, Ghetmiri S A, Conley B R, Mosleh A, Nazzal A, Soref R A, Sun G, Tolle J, Margetis J, Naseem H A and Yu S Q 2014 Appl. Phys. Lett. 105 051104
[36] Oehme M, Kostecki K, Schmid M, Kaschel M, Gollhofer M, Ye K, Widmann D, Koerner R, Bechler S, Kasper E and Schulze J 2014 Appl. Phys. Lett. 104 161115
[3] Han G Q, Wang Y B, Liu Y, Zhang C F, Feng Q, Liu M S, Zhao S L, Cheng B W, Zhang J C and Hao Y 2016 IEEE Electron. Dev. Lett. 37 701
[4] Hansen M P and Malchow D S 2008 Proceedings of SPIE-The International Society for Optical Engineering, March 18-20, 2008, Orlando, FL, USA, U82-U92
[5] Soref R, Buca D and Yu S Q 2016 Opt. Photon. News. 27 32
[6] Bauer M R, Cook C S, Aella P, Tolle J, Kouvetakis J, Crozier P A, Chizmeshya A V G, Smith D J and Zollner S 2003 Appl. Phys. Lett. 83 3489
[7] Gassenq A, Gencarelli F, Campenhout J V, Shimura Y, Loo R, Narcy G, Vincent B and Roelkens G 2012 Opt. Express 20 27297
[8] Kasper E, Kittler M, Oehme M and Arguirov T 2013 Photon. Res. 1 69
[9] Kouvetakis J, Menendez J and Chizmeshya A V G 2006 Annu. Rev. Mater. Res. 36 497
[10] Wang W, Su S J, Zheng J, Zhang G Z, Zuo Y H, Cheng B W and Wang Q M 2011 Chin. Phys. B 20 068103
[11] Zhang Z P, Song Y X, Zhu Z Y S, Han Y, Chen Q M, Li Y Y, Zhang L Y and Wang S M 2017 Aip. Adv. 7 045211
[12] Bauer M R, Tolle J, Bungay C, Chizmeshya A V G, Smith D J, Menéndez J and Kouvetakis J 2003 Solid. State. Commun. 127 355
[13] Zaima S, Nakatsuka O, Taoka N, Kurosawa M, Takeuchi W and Sakashita M 2015 Sci. Technol. Adv. Mat. 16 043502
[14] Luan H C, Lim D R, Lee K K, Chen K M, Sandl, J G, Wada K and Kimerling L C 1999 Appl. Phys. Lett. 75 2909
[15] Mathews J, Roucka R, Xie J, Yu S Q, Menéndez J and Kouvetakis J 2009 Appl. Phys. Lett. 95 133506
[16] Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A and Sun G 2013 Appl. Phys. Lett. 103 231907
[17] Zheng J, Wang S, Liu Z, Cong H, Xue C L, Li C B, Zuo Y H, Cheng B W and Wang Q M 2016 Appl. Phys. Lett. 108 033503
[18] Dong Y, Wang W, Lei D, Gong X, Zhou Q, Lee S Y, Loke W K, Yoon S F, Tok E S, Liang G and Yeo Y C 2015 Opt. Express 23 18611
[19] Zhang D L, Xue C L, Cheng B W, Su S J, Liu Z, Zhang X, Zhang G Z, Li C B and Wang Q M 2013 Appl. Phys. Lett. 102 141111
[20] Conley B R, Mosleh A, Ghetmiri S A, Du W, Soref R A, Sun G, Margetis J, Tolle J, Naseem H A and Yu S Q 2014 Opt. Express 22 15639
[21] Cong H, Xue C L, Zheng J, Yang F, Yu K, Liu Z, Zhang X, Cheng B W and Wang Q M 2016 IEEE Photon. J. 8 1
[22] Gassenq A, Gencarelli F, Campenhout J V, Shimura Y, Loo R, Narcy G, Vincent B and Roelkens G 2012 Opt. Express 20 27297
[23] Xu S Q, Huang Y C, Wang W, Dong Y, Masudy-Panah S, Guo X, Wang H, Gong X and Yeo Y C 2018 IEEE International Conference on Group IV Photonics, August 29-31, 2018, Cancun, Mexico, p. 139
[24] Pham T, Du W, Tran H, Margetis J, Tolle J, Sun G, Soref R A, Naseem H A, Li B and Yu S Q 2016 Opt. Express 24 4519
[25] Tran H, Pham T, Du W, Zhang Y, Grant P C, Grant J M, Sun G, Soref R A, Margetis J, Tolle J, Li B, Mortazavi M and Yu S Q 2018 J. Appl. Phys. 124 013101
[26] Ye K, Zhang W, Oehme M, Schmid M, Gollhofer M, Kostecki K, Widmann D, Körner R, Kasper E and Schulze J 2015 Solid. State. Electron. 110 71
[27] Conley B R, Mosleh A, Ghetmiri S A, Du W, Soref R A, Sun G, Margetis J, Tolle J, Naseem H A and Yu S Q 2014 Opt. Express 22 15639
[28] Pham T, Conley B R, Margetis J, Tran H, Ghetmiri S A, Mosleh A, Du W, Sun G, Soref R A, Tolle J, Naseem H A, Li B H and Yu S Q 2015 Conference on Lasers and Electro-optics, May 10-15, 2015, San Jose, CA, USA, STh1I.7
[29] Liu J, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J and Kimerling L C 2004 Phys. Rev. B 70 155309
[30] Oehme M, Schmid M, Kaschel M, Gollhofer M, Widmann D, Kasper E and Schulze J 2012 Appl. Phys. Lett. 101 141110
[31] Su S J,Cheng B W, Xue C L, Wang W, Cao Q, Xue H Y, Hu W X, Zhang G Z, Zuo Y H and Wang Q M 2011 Opt. Express 19 6408
[32] Lu C M, Lee C H, Nishimura T and Toriumi A 2015 Appl. Phys. Lett. 107 072904
[33] Morea M, Brendel C E, Zang K, Suh J, Fenrich C S, Huang Y C, Chung H, Huo Y, Kamins T I, Saraswat K C and Harris J S 2017 Appl. Phys. Lett. 110 091109
[34] Huang B J, Lin J H, Cheng H H and Chang G E 2018 Opt. Lett. 43 1215
[35] Zheng J, Liu Z, Xue C L, Li C B, Zuo Y H, Cheng B W and Wang Q M 2018 J. Semicond. 39 061006
[36] Oehme M, Kostecki K, Schmid M, Kaschel M, Gollhofer M, Ye K, Widmann D, Koerner R, Bechler S, Kasper E and Schulze J 2014 Appl. Phys. Lett. 104 161115
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[4] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[5] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[6] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[9] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[10] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[11] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[12] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[13] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[14] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[15] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
No Suggested Reading articles found!