Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107501    DOI: 10.1088/1674-1056/ab3a89
Special Issue: SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang
SPECIAL TOPIC—A celebration of the 100th birthday of Kun Huang Prev   Next  

Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire

Ling-Jian Kong(孔令剑)1, Yong Zhou(周勇)2, Hua-Ding Song(宋化鼎)1, Da-Peng Yu(俞大鹏)2, Zhi-Min Liao(廖志敏)1,3,4
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2 Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
3 Beijing Key Laboratory of Quantum Devices, Peking University, Beijing 100871, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  SmB6, a topological Kondo insulator, with a gapped bulk state and metallic surface state has aroused great research interest. Here, we report an exotic hysteresis behavior of magnetoresistance in individual SmB6 nanowire in a temperature range in which both surface and bulk states contribute to the total conductance. Under a magnetic field parallel to the SmB6 nanowire, the resistance suddenly increases at the turning point from up-sweep to down-sweep of the magnetic field. The magnetoresistance hysteresis loops are well consistent with the magnetocaloric effect. Our results suggest that the SmB6 nanowires possess potential applications in the magnetic cooling technology.
Keywords:  topological Kondo insulator      magnetocaloric effect      magnetoresistance hysteresis  
Received:  11 June 2019      Revised:  24 July 2019      Accepted manuscript online: 
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300802) and the National Natural Science Foundation of China (Grant Nos. 61825401 and 11774004).
Corresponding Authors:  Zhi-Min Liao     E-mail:  liaozm@pku.edu.cn

Cite this article: 

Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏) Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire 2019 Chin. Phys. B 28 107501

[1] Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408
[2] Dzero M, Sun K, Coleman P and Galitski V 2012 Phys. Rev. B 85 045130
[3] Kim D J, Thomas S, Grant T, Botimer J, Fisk Z and Xia J 2013 Sci. Rep. 3 3150
[4] Baruselli P P and Vojta M 2016 Phys. Rev. B 93 195117
[5] Chen F, Shang C, Jin Z, Zhao D, Wu Y P, Xiang Z J, Xia Z C, Wang A F, Luo X G, Wu T and Chen X H 2015 Phys. Rev. B 91 205133
[6] Dzero M and Galitski V 2013 J. Exp. Theor. Phys. 117 499
[7] Gabani S, Pristas G, Takacova I, Sluchanko N, Siemensmeyer K, Shitsevalova N, Filipov V and Flachbart K 2015 Solid State Sci. 47 17
[8] Zhu G B and Yang H M 2016 Chin. Phys. B 25 107303
[9] Kim D J, Xia J and Fisk Z 2014 Nat. Mater. 13 466
[10] Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z and Li L 2014 Science 346 1208
[11] Phelan W A, Koohpayeh S M, Cottingham P, Freeland J W, Leiner J C, Broholm C L and McQueen T M 2014 Phys. Rev. X 4 031012
[12] Wolgast S, Kurdak C, Sun K, Allen J W, Kim D J and Fisk Z 2013 Phys. Rev. B 88 180405
[13] Funahashi S, Tanaka K and Iga F 2010 Acta Cryst. B 66 292
[14] Frantzeskakis E, de Jong N, Zwartsenberg B, Huang Y K, Pan Y, Zhang X, Zhang J X, Zhang F X, Bao L H, Tegus O, Varykhalov A, de Visser A and Golden M S 2013 Phys. Rev. X 3 041024
[15] Suga S, Sakamoto K, Okuda T, Miyamoto K, Kuroda K, Sekiyama A, Yamaguchi J, Fujiwara H, Irizawa A, Ito T, Kimura S, Balashov T, Wulfhekel W, Yeo S, Iga F and Imada S 2014 J. Phys. Soc. Jpn. 83 014705
[16] Xu N, Ding H and Shi M 2016 J. Phys.: Conden. Matter 28 363001
[17] Xu N, Biswas P K, Dil J H, Dhaka R S, Landolt G, Muff S, Matt C E, Shi X, Plumb N C, Radovic M, Pomjakushina E, Conder K, Amato A, Borisenko S V, Yu R, Weng H M, Fang Z, Dai X, Mesot J, Ding H and Shi M 2014 Nat. Commun. 5 4566
[18] Zhou Y, Lai J, Kong L, Ma J, Lin Z, Lin F, Zhu R, Xu J, Huang S M, Tang D, Liu S, Zhang Z, Liao Z M, Sun D and Yu D 2018 Appl. Phys. Lett. 112 162106
[19] Lin Z, Zhou Y, Kong L J, Tang D, Lu H Z, Huang S M, Zhu R, Xu J, Lin F, Wang J, Liao Z M and Yu D 2017 Phys. Rev. B 96 165408
[20] Thomas S, Kim D J, Chung S B, Grant T, Fisk Z and Xia J 2016 Phys. Rev. B 94 205114
[21] Stern A, Efimkin D K, Galitski V, Fisk Z and Xia J 2016 Phys. Rev. Lett. 116 166603
[22] Nakajima Y, Syers P, Wang X, Wang R and Paglione J 2016 Nat. Phys. 12 213
[23] Zhou L, Ye B C, Gan H B, Tang J Y, Chen P B, Du Z Z, Tian Y, Deng S Z, Guo G P, Lu H Z, Liu F and He H T 2019 Phys. Rev. B 99 155424
[24] Pecharsky V K and Gschneidner K A 1997 Phys. Rev. Lett. 78 4494
[25] Pecharsky V K and Gschneidner K A 1999 J. Magn. Magn. Mater. 200 44
[26] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[27] Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325
[28] Wolgast S, Eo Y S, Oeztuerk T, Li G, Xiang Z, Tinsman C, Asaba T, Lawson B, Yu F, Allen J W, Sun K, Li L, Kurdak C, Kim D J and Fisk Z 2015 Phys. Rev. B 92 115110
[29] Zhou Y, Peng Y, Yin Y, Zhou W, Zhou F, Liu C, Liu G, Sun L and Tang D 2016 J. Phys. D: Appl. Phys. 49 265302
[30] Kong L, Zhou Y, Liu S, Lin Z, Zhang L, Lin F, Tang D, Wu H C, Liu J, Lu H Z, Zhu R, Xu J, Liao Z M and Yu D 2017 Phys. Rev. B 95 235410
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[13] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!