Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077501    DOI: 10.1088/1674-1056/ab90f3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound

Yan-Hong Ding(丁燕红)1, Fan-Zhen Meng(孟凡振)1, Li-Chen Wang(王利晨)2,3,4, Ruo-Shui Liu(刘若水)3, Jun Shen(沈俊)2,4
1 School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic and Communication Devices, Tianjin University of Technology, Tianjin 300384, China;
2 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Physics, Capital Normal University, Beijing 100048, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Rare-earth (R)-based materials with large reversible magnetocaloric effect (MCE) are attracting much attention as the promising candidates for low temperature magnetic refrigeration. In the present work, the magnetic properties and MCE of DyNiGa compound with TiNiSi-type orthorhombic structure are studied systematically. The DyNiGa undergoes a magnetic transition from antiferromagnetic (AFM) to paramagnetic state with Néel temperature TN = 17 K. Meanwhile, it does not show thermal and magnetic hysteresis, revealing the perfect thermal and magnetic reversibility. Moreover, the AFM state can be induced into a ferromagnetic state by a relatively low field, and thus leading to a large reversible MCE, e.g., a maximum magnetic entropy change (-ΔSM) of 10 J/kg·K is obtained at 18 K under a magnetic field change of 5 T. Consequently, the large MCE without thermal or magnetic hysteresis makes the DyNiGa a competitive candidate for magnetic refrigeration of hydrogen liquefaction.
Keywords:  DyNiGa      antiferromagnetic      magnetocaloric effect      first-order phase transition  
Received:  11 February 2020      Revised:  20 April 2020      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Bb (Fe and its alloys)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51701130 and 51925605), the Natural Science Foundation of Tianjin, China (Grant Nos. 18ZXCLGX00040 and 15JCZDJC38700), and the National Key Research and Development Program of China (Grant Nos. 2019YFA0704900, 2019YFA0705000, 2019YFA0705100, 2019YFA0705200, and 2019YFA0705300).
Corresponding Authors:  Yan-Hong Ding, Li-Chen Wang     E-mail:  lucydyh@163.com;wanglichen@mail.ipc.ac.cn

Cite this article: 

Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊) Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound 2020 Chin. Phys. B 29 077501

[1] Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512
[2] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[3] Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
[4] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
[5] Zheng X Q, Shen J, Hu F X Sun J R and Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)
[6] Barclay J A and Steyert W A 1982 Cryogenics 22 73
[7] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[8] Wang Y X, Zhang H, Liu E K, Zhong X C, Tao K, Wu M L, Xing C F, Xiao Y N, Liu J and Long Y 2018 Adv. Electron. Mater. 4 1700636
[9] Zheng X Q, Xu J W, Zhang H, Zhang J Y, Wang S G, Zhang Y, Xu Z Y, Wang L C and Shen B G 2018 AIP Adv. 8 056432
[10] Zhang H, Shen B G 2015 Chin. Phys. B 24 127504
[11] Gupta S and Suresh K G 2015 J. Alloys Compd. 618 562
[12] Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl. Phys. Lett. 96 152501
[13] Wang Y X, Zhang H, Wu M L, Tao K, Li Y W, Yan T, Long K W, Long T, Pang Z and Long Y 2016 Chin. Phys. B 25 127104
[14] Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett. 102 092401
[15] Zhang H, Sun Y J, Niu E, Yang L H, Shen J, Hu F X, Sun J R and Shen B G 2013 Appl. Phys. Lett. 103 202412
[16] Zhang X X, Wang F W and Wen G H 2001 J. Phys.: Condes. Matter 13 L747
[17] Zhang H, Wu Y Y, Long Y, Wang H S, Zhong K X, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 116 213902
[18] Chen J, Shen B G, Dong Q Y and Sun J R 2010 Solid State Commun. 150 1429
[19] Canepa F, Napoletano M, Palenzona A, Merlo F and Cirafici S 1999 J. Phys. D: Appl. Phys. 32 2721
[20] Vasilechko L O and Grin Y 1996 Inorg. Mater. 32 512
[21] Arora P, Chattopadhyay M K, Chandra L S S, Sharma V K and Roy S B 2011 J. Phys.: Condes. Matter 23 056002
[22] Mo Z J, Shen J, Yan L Q, Wu J F, Wang L C, Lin J, Tang C C and Shen B G 2013 Appl. Phys. Lett. 102 192407
[23] Gupta S, Rawat R and Suresh K G 2014 Appl. Phys. Lett. 105 012403
[24] Zheng X Q and Shen B G 2017 Chin. Phys. B 26 027501
[25] Banerjee S K 1964 Phys. Lett. 12 16
[26] Liu R S, Liu J, Wang L C, Li Z R, Yu X, Mi Y, Dong Q Y, Li K, Li D L, Lv C H, Liu L F and He S L 2020 Chin. Phys. Lett. 37 017501
[27] Dong Q Y, Shen B G, Chen J, Shen J, Zhang H W and Sun J R 2009 J. Appl. Phys. 105 113902
[28] von Ranke P J, Mota M A, Grangeia D F, Magnus A, Carvalho G, Gandra F C G, Coelho A A, Caldas A, de Oliveira N A and Gama S 2004 Phys. Rev. B 70 134428
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[6] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[7] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[8] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[9] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[10] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[11] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[12] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[13] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
[14] Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure
Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2021, 30(11): 117502.
[15] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
No Suggested Reading articles found!