Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077501    DOI: 10.1088/1674-1056/abf916
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)

Lu-Ling Li(李炉领)1, Xiao-Yu Yue(岳小宇)1,†, Wen-Jing Zhang(张文静)1, Hu Bao(鲍虎)3, Dan-Dan Wu(吴丹丹)1, Hui Liang(梁慧)1, Yi-Yan Wang(王义炎)1, Yan Sun(孙燕)1, Qiu-Ju Li(李秋菊)3, and Xue-Feng Sun(孙学峰)2,1,‡
1 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics(CAS), University of Science and Technology of China, Hefei 230026, China;
3 School of Physics & Material Science, Anhui University, Hefei 230039, China
Abstract  The magnetism and magnetocaloric effect (MCE) of rare-earth-based tungstate compounds $R_{3}$BWO$_{9 }$ ($R = {\rm Gd}$, Dy, Ho) have been studied by magnetic susceptibility, isothermal magnetization, and specific heat measurements. No obvious long-range magnetic ordering can be found down to 2 K. The Curie-Weiss fitting and magnetic susceptibilities under different applied fields reveal the existence of weak short-range antiferromagnetic couplings at low temperature in these systems. The calculations of isothermal magnetization exhibit a giant MCE with the maximum changes of magnetic entropy being 54.80 J/kg$\cdot$K at 2 K for Gd$_{3}$BWO$_{9}$, 28.5 J/kg$\cdot$K at 6 K for Dy$_{3}$BWO$_{9}$, and 29.76 J/kg$\cdot$K at 4 K for Ho$_{3}$BWO$_{9}$, respectively, under a field change of 0-7 T. Especially for Gd$_{3}$BWO$_{9}$, the maximum value of magnetic entropy change ($-\Delta S_{M}^{\max}$) and adiabatic temperature change ($ - \Delta T_{\rm ad}^{\max}$) are 36.75 J/kg$\cdot$K and 5.56 K for a low field change of 0-3 T, indicating a promising application for low temperature magnetic refrigeration.
Keywords:  magnetocaloric effect      short-range spin correlation  
Received:  25 March 2021      Revised:  13 April 2021      Accepted manuscript online:  19 April 2021
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832209, 11874336, and 11904003), the National Basic Research Program of China (Grant No. 2016YFA0300103), the Innovative Program of Hefei Science Center CAS (Grant No. 2019HSC-CIP001), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085MA09).
Corresponding Authors:  Xiao-Yu Yue, Xue-Feng Sun     E-mail:  xyyue@ahu.edu.cn;xfsun@ustc.edu.cn

Cite this article: 

Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰) Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho) 2021 Chin. Phys. B 30 077501

[1] Matsunami D, Fujita A, Takenaka K and Kano M 2015 Nat. Mater. 14 73
[2] Balli M, Jandl S, Fournier P and Dimitrov D Z 2016 Appl. Phys. Lett. 108 102401
[3] Balli M, Jandl S, Fournier P and Kedous-Lebouc A 2017 Appl. Phys. Rev. 4 021305
[4] Franco V, Bláquez J S, lpus J J, Law J Y, Moreno-Ramíez L M and Conde A 2018 Prog. Mater. Sci. 93 112
[5] Brown G V 1976 J. Appl. Phys. 47 3673
[6] Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[7] Numazawa T, Kamiya K, Utaki T and Matsumoto K 2014 Cryogenics 62 185
[8] Pakhira S, Mazumdar C, Ranganathan R and Avdeev M 2017 Sci. Rep. 7 7367
[9] Lorusso G, Sharples J W, Palacios E, Roubeau O, Brechin E K, Sessoli R, Rossin A, Tuna F, McInnes E J L, Collison D and Evangelisti M 2013 Adv. Mater. 25 4653
[10] Palacios E, Rodríguez-Velamazán J A, Evangelisti M, Mclntyre G J, Lorusso G, Visser D, de Jongh L J and Boatner L A 2014 Phys. Rev. B 90 214423
[11] Li L, Nishimura K, Hutchison W D, Qian Z, Huo D and NamiKi T 2012 Appl. Phys. Lett. 100 152403
[12] Wang W, Li Y, Li L, Li Q, Wang D, Zhu J, Li J and Zeng M 2021 J. Phys.: Condens. Matter 33 015802
[13] Balli M, Jandl S, Fournier P, Vermette J and Dimitrov D Z 2018 Phys. Rev. B 98 184414
[14] Monteiro J C B, dos Reis R D and Gandra F G 2015 Appl. Phys. Lett. 106 194106
[15] Yin L H, Yang J, Tong P, Luo X, Song W H, Dai J M, Zhu X B and Sun Y P 2017 Appl. Phys. Lett. 110 192904
[16] Karotsis G, Kennedy S, Teat S J, Beavers C M, Fowler D A, Morales J J, Evangelisti M, Dalgarno S J and Brechin E K 2010 J. Am. Chem. Soc. 132 12983
[17] Jiang X, Ouyang Z W, Wang Z X, Xia Z C and Rao G H 2018 J. Phys. D: Appl. Phys. 51 045001
[18] Liu J D, Ouyang Z W, Liu X C, Cao J J, Wang Z X, Xia Z C and Rao G H 2020 J. Appl. Phys. 127 173902
[19] Ma Y F, Tang B Z, Xia L and Ding D 2016 Chin. Phys. Lett. 33 126101
[20] Tang B Z, Liu X P, Li D M, Yu P and Xia L 2020 Chin. Phys. B 29 056401
[21] Mahana S, Manju U and Topwal D 2017 J. Phys. D: Appl. Phys. 50 035002
[22] Midya A, Khan N, Bhoi D and Mandal P 2014 J. Appl. Phys. 115 17E114
[23] Das M, Roy S and Mandal P 2017 Phys. Rev. B 96 174405
[24] Dey K, Indra A, Majumdar S and Giri S 2017 J. Mater. Chem. C 5 1646
[25] Dutta A, Jana R, Mukherjee G D and Das I 2020 J. Alloys Compd. 846 156221
[26] Lei D D, Ouyang Z W, Yue X Y, Yin L, Wang Z X, Wang J F, Xia Z C and Rao G H 2018 J. Appl. Phys. 124 233904
[27] Ashtar M, Guo J, Wan Z, Wang Y, Gong G Liu Y, Su Y and Tian Z 2020 Inorg. Chem. 59 5368
[28] McCusker L B, Von Dreele R B, Cox D E, Louër D and Scardi P 1999 J. Appl. Cryst. 32 36
[29] Basu T, Singh K, Gohil S, Ghosh S and Sampathkumaran E V 2015 J. Appl. Phys. 118 234103
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[10] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[11] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[14] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[15] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
No Suggested Reading articles found!