Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩)1,2, Junfeng Wang(王俊峰)2, Lu Tian(田路)2, Jianjian Gong(巩建建)1,2, Zhaojun Mo(莫兆军)2,†, Jun Shen(沈俊)3, and Baogen Shen(沈保根)1,‡
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; 2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; 3 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract We investigate the structural, magnetic, and magnetocaloric effects (MCE) of TmErCuAl (, 0.5, and 0.75) compounds. The compounds undergo a second-order phase transition originating from the ferromagnetic to paramagnetic transition around 3.2 K, 5 K, and 6 K, respectively. The maximum magnetic entropy changes () of TmErCuAl (, 0.5, and 0.75) are 17.1 JkgK, 18.1 JkgK, and 17.5 JkgK under the magnetic field in the range of 0-2 T, with the corresponding refrigerant capacity (RC) values of 131 Jkg, 136 Jkg, and 126 Jkg, respectively. The increase of for TmErCuAl may be relevant to the change of magnetic moment distribution of Er and stress coming from element substitution. This work provides several compounds that can enrich the family of giant MCE materials in the cryogenic region.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52171195, and 52171054), the National Science Foundation for Distinguished Young Scholars (Grant No. 51925605), and the Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20200042).
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根) Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds 2022 Chin. Phys. B 31 127501
[1] Zhang H, Li Y W, Liu E K, Ke Y J, Jin J L, Long Y and Shen B G 2015 Sci. Rep.5 11929 [2] Kimel A V, Kirilyuk A, Tsvetkov, Pisarev R V and Rasing T 2004 Nature429 850 [3] Pecharsky V K and Gschneidner K A 1997 Appl. Phys. Lett.70 3299 [4] Chen D, Taylor K P, Hall Q and Kaplan J M 2016 Genetics204 1151 [5] Zhang Z Y, Tang Q, Wang F C, Zhang H Y, Zhou Y X, Xia A L, Li H L, Chen S S and Li W H 2019 Intermetallics111 106500 [6] Dong X S, Feng J, Yi Y L and Li L W 2018 J. Appl. Phys.124 093901 [7] Zhang Y K. Tian Y, Zhang Z Q, Jia Y S, Zhang B, Jiang M Q, Wang J and Ren Z M 2022 Acta Mater.226 117669 [8] Xu P, Hu L, Zhang Z Q, Wang H F and Li L W 2022 Acta Mater.236 118114 [9] Xu P, Ma Z P, Wang P F, Wang H F and Li L W 2021 Mater. Today Phys.20 100470 [10] Zhang Y K, Zhu J, Li S, Zhang Z Q, Wang J and Ren Z M 2022 Sci. China Mater.65 1345 [11] Zhang H and Shen B G 2015 Chin. Phys. B24 127504 [12] Giguere A, Foldeaki M, Schnelle W and Gmelin E 1999 J. Phys.: Condens. Matter.11 6969 [13] Pecharsky V K and Gschneidner K A 1998 Phys. Rev. B58 12110 [14] Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett.103 052409 [15] Li L W, Yuan Y, Zhang Y K, Namiki T, Nihimura K, Pöttgen R and Zhou S Q 2015 Appl. Phys. Lett.107 132401 [16] Gupta S and Suresh K G 2015 J. Alloys Compd.618 562 [17] Wang L C, Dong Q Y, Mo Z J, Xu Z Y, Hu F X, Sun J R and Shen B G 2013 J. Appl. Phys.114 163915 [18] Oesterreicher H 1973 J. Less Common Met.30 225 [19] Dong Q Y, Chen J, Shen J, Sun J R and Shen B G 2012 J. Magn. Magn. Mater.324 2676 [20] Javorský P, Burlet P, Ressouche E, Sechovský V, Michor H and Lapertot G 1996 Physica B225 230 [21] Mo Z J, Shen J, Yan L Q, Wu J F and Wang L C 2013 Appl. Phys. Lett.102 192407 [22] Javorsky P, Gubbens P C M, Mulders A M, Prokeš K, Stüsser N, Gortenmulder T J and Hendrikx R W A 2002 J. Magn. Magn. Mater.251 123 [23] Zheng X Q, Zhang B, Wu H, Hu F X, Huang Q Z and Shen B G 2016 J. Appl. Phys.120 163907 [24] Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett.102 092401 [25] Wang J L, Marquina C, Ibarra M R and Wu G H 2006 Phys. Rev. B73 094436 [26] Farrell J and Wallace W E 1966 J. Inorg. Chem.5 105 [27] Gignoux D and Givord F 1983 J. Magn. Magn. Mater.31 217 [28] Ćwik J, Koshkid'ko Y, Nenkov K, Tereshina-Chitrova E and Kolchugina N 2021 J. Alloys Compd.859 157870 [29] Hao J Z, Hu F X, Zhou H B, Liang W H, Yu Z B, Shen F R, Gao Y H, Qiao K M, Li J, Zhang C, Wang B J, Wang J, He J, Sun J R and Shen B G 2020 Scr. Mater.186 84 [30] Franco V and Conde A 2010 Int. J. Refrig.33 465
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.