Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077501    DOI: 10.1088/1674-1056/ac597f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition

Yan Zhang(张艳)1,3, You-Guo Shi(石友国)2, Li-Chen Wang(王利晨)2, Xin-Qi Zheng(郑新奇)4, Jun Liu(刘俊)2, Ya-Xu Jin(金亚旭)1,3, Ke-Wei Zhang(张克维)1,3, Hong-Xia Liu(刘虹霞)1,3, Shuo-Tong Zong(宗朔通)1,3,†, Zhi-Gang Sun(孙志刚)1,3, Ji-Fan Hu(胡季帆)1,3, Tong-Yun Tong(赵同云)2, and Bao-Gen Shen(沈保根)2
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Laboratory of Magnetic and Electric Functional Materials and Applications, The Key Laboratory of Shanxi Province, Taiyuan 030024, China;
4 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  HoBi single crystal and polycrystalline compounds with NaCl-type structure are successfully obtained, and their magnetic and magnetocaloric properties are studied in detail. With temperature increasing, HoBi compound undergoes two magnetic transitions at 3.7 K and 6 K, respectively. The transition temperature at 6 K is recognized as an antiferromagnetic-to-paramagnetic (AFM-PM) transition, which belongs to the first-order magnetic phase transition (FOMT). It is interesting that the HoBi compound with FOMT exhibits good thermal and magnetic reversibility. Furthermore, a large inverse and normal magnetocaloric effect (MCE) is found in HoBi single crystal in the $H|| [100]$ direction, and the positive $\Delta S_{\rm M}$ peak reaches 13.1 J/kg$\cdot$K under a low field change of 2 T and the negative $\Delta S_{\rm M}$ peak arrives at $-18 $ J/kg$\cdot$K under a field change of 5 T. These excellent properties are expected to be applied to some magnetic refrigerators with special designs and functions.
Keywords:  magnetocaloric effect      antiferromagnetic      rare-earth compounds  
Received:  23 January 2022      Revised:  25 February 2022      Accepted manuscript online:  02 March 2022
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Ee (Antiferromagnetics)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
Fund: Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant No. 2021L304), the Taiyuan University of Science and Technology Scientific Research Initial Funding, China (Grant Nos. 20202022 and 20222002), the Funding for Outstanding Doctoral Research in Jin, China (Grant No. 20212002), the Fund from the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China (Grant No. 2022-KF-32), and the National Natural Science Foundation of China (Grant No. 51901150).
Corresponding Authors:  Shuo-Tong Zong     E-mail:  zongshuotong@tyust.edu.cn

Cite this article: 

Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根) Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition 2022 Chin. Phys. B 31 077501

[1] Gutfleisch O, Willard M A, Brükk E, Chen C H, Sancar S G and Liu J P 2011 Adv. Mater. 23 821
[2] Pecharsky V K and Gschneidner K A Jr 1999 J. Magn. Magn. Mater. 200 44
[3] Smith A 2012 Adv. Energy Mater. 2 1288
[4] Gschneider K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[5] Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494
[6] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[7] Yang S X, Zheng X Q, Yang W Y, Xu J W, Liu J, Xi L, Zhang H, Wang L C, Xu Z Y, Zhang J Y, Wu Y F, Ma X B, Chen D F, Yang J B, Wang S G and Shen B G 2020 Phys. Rev. B 102 134425
[8] Zhang Y, Dong Q Y, Wang L C, Zhang M, Sun J R, Hu F X and Shen B G 2016 RSC Adv. 6 106171
[9] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L and Planes A 2005 Nat. Mater. 4 450
[10] Wei L S, Zhang X X, Gan W M, Ding C, Liu C F, Geng L and Yan Y W 2021 J. Alloys Compd. 874 159755
[11] Liu F X, Zhang H, Zhou H, Cong D Y, Huang R J, Wang L C and Long Y 2020 Sci. China-Phys. Mech. Astron. 63 277511
[12] Biswas A, Chandra S, Samanta T, Ghosh B, Datta S, Phan M H, Raychaudhuri A K, Das I and Srikanth H 2013 Phys. Rev. B 87 134420
[13] Liu J, Xu Z Y, Xu J W, Zuo S L, Zhang Y, Liu D, Zheng X Q, Wang L C, Zhao T Y, Hu F X, Sun J R and Shen B G 2020 J. Magn. Magn. Mater. 502 166551
[14] Zhang X X, Zhang B, Yu S Y, Liu Z H, Xu W J, Liu G D, Chen J L, Cao Z X and Wu G H 2007 Phys. Rev. B 76 132403
[15] Guzik A, Talik E and Zajdel P 2020 Intermetallics 118 106686
[16] Fente A, Suderow H, Vieira S, Nemes N M, García-Hernández M, Bud'ko S L and Canfield P C 2013 Solid State Commun. 171 59
[17] Yang H Y, Gaudet J, Aczel A A, Graf D E, Blaha P, Gaulin B D and Fazel Tafti 2018 Phys. Rev. B 98 045136
[18] Alho B P, Ribeiro P O, von Ranke P J, Guillou F, Mudryk Y and Pecharsky V K 2020 Phys. Rev. B 102 134425
[19] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L and Planes A 2005 Nat. Mater. 4 450
[20] Zhang B, Zheng X Q, Zhang Y, Zhao X, Xiong J F, Zuo S L, Liu D, Zhao T Y, Hu F X and Shen B G 2018 AIP Advances 8 056423
[21] Zhang H, Sun Y J, Yang L H, Niu E, Wang H S, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 115 063901
[22] Arora P, Chattopadhyay M K, Chandra L S S, Sharma V K and Roy S B 2011 J. Phys.:Condens. Matter 23 056002
[23] Law J Y, Franco V, Moreno-Ramírez L M, Conde A, Karpenkov D Y, Radulov I, Skokov K P and Gutfleisch O 2018 Nat. Commun. 9 2680
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[8] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[9] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[10] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[11] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[12] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
[13] Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure
Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2021, 30(11): 117502.
[14] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[15] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
No Suggested Reading articles found!