Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037502    DOI: 10.1088/1674-1056/ab69e7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds

Wen-Hao Jiang(姜文昊)1, Zhao-Jun Mo(莫兆军)1, Jia-Wei Luo(罗佳薇)1, Zhe-Xuan Zheng(郑哲轩)1, Qiu-Jie Lu(卢秋杰)1, Guo-Dong Liu(刘国栋)3, Jun Shen(沈俊)2, Lan Li(李岚)1
1 School of Material Science and Engineering, Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Key Laboratory for Optoelectronic Materials and Devices of Tianjin, Tianjin University of Technology, Tianjin 300191, China;
2 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, China
Abstract  The magnetic properties and magnetocaloric effect (MCE) of EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds are investigated. Owing to electronic doping, parts of Ti ions are replaced by Nb ions, the lattice constant increases and a small number of Ti4+ (3d0) ions change into Ti3+ (3d1). It is the ferromagnetism state that is dominant in the derivative balance. The values of the maximum magnetic entropy change (-ΔSMmax) are 10.3 J/kg·K, 9.6 J/kg·K, 13.1 J/kg·K, and 11.9 J/kg·K for EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds and the values of refrigeration capacity are 36, 33, 86, and 80 J/kg as magnetic field changes in a range of 0 T-1 T. The EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds with giant reversible MCE are considered as a good candidate for magnetic refrigerant working at low-temperature and low-field.
Keywords:  magnetocaloric effect      magnetic entropy change      magnetic phase transformation  
Received:  14 October 2019      Revised:  02 January 2020      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  65.40.gd (Entropy)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the Science & Technology Development Fund of Tianjin Education Commission for Higher Education, China (Grant No. 2017KJ247).
Corresponding Authors:  Zhao-Jun Mo, Lan Li     E-mail:  mzjmzj163@163.com;lilan@tjut.edu.cn

Cite this article: 

Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚) Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds 2020 Chin. Phys. B 29 037502

[1] Benford S M and Brown G V 1981 J. Appl. Phys. 52 2110
[2] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[3] Karmakar S K, Giri S and Majumdar S 2017 J. Appl. Phys. 121 043901
[4] Ma Y H, Dong X S, Qi Y and Li L W 2018 J. Magn. Magn. Mater.
[5] Souza R L, Monteiro J C B, dos Santos A O, Cardoso L P and da Silva L M 2019 J. Magn. Magn. Mater. 165653
[6] Guo D, Wang Y M, Li H D, Guan R G, Xu H and Zhang Y K 2019 J. Magn. Magn. Mater. 489 165462
[7] Li L W, Huo D X, Su K P and Pöttgen R 2018 Intermetallics 93 343
[8] Zhang Y K, Guo D, Yang Y, Geng S H, Li X, Ren Z M and Wilde G 2017 J. Alloys Compd. 702 546
[9] Zhang X X, Wang F W and Wen G H 2011 J. Phys.: Condens. Matter 13 L747
[10] Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)
[11] Midya A, Khan N, Bhoi D and Mandal P 2014 J. Appl. Phys. 115 17E114
[12] Bhattia I N, Mahatob R N, Bhattib I N and Ahsan M A H 2019 Physica B 558 59
[13] Li L W, Su K P and Huo D X 2018 J. Alloys Compd. 735 773
[14] Li L W, Wang J, Su K P, Huo D X and Qi Y 2016 J. Alloys Compd. 658 500
[15] Balli M, Jandl S, Fournier P and Gospodinov M M 2014 Appl. Phys. Lett. 104 232402
[16] Dey K, Indra A, Majumdar S and Giri S 2017 J. Mater. Chem. 5 1646
[17] Shvartsman V V, Borisov P, Kleemann W, Kamba S and Katsufuji T 2010 Phys. Rev. B 81 064426
[18] Rubi K, Chen R F, Wang J S and Mahendiran R 2016 Phys. Rev. B 93 094422
[19] Mo Z J, Shen J, Li L, Liu Y, Tang C C, Hu F X, Sun J R and B G Shen 2015 Mater. Lett. 158 282
[20] Rubi K, Kumar P, Maheswar Repaka D V, Chen R F, Wang J S and Mahendiran R 2014 Appl. Phys. Lett. 104 032407
[21] Mo Z J, Sun Q L, Wang C H, et al. 2016 Ceram. Int. 43 2083
[22] Mo Z J, Sun Q L, Shen J, Yang M, et al. 2018 Chin. Phys. B 27 017501
[23] Roy S, Das M and Mandal P 2018 Phys. Rev. Mater. 2 064412
[24] Li L, Zhou H D, Yan J Q, Mandrus D and Keppens V 2014 APL Mater. 2 110701
[25] Li L, Morris J R, Koehler M R, Dun Z L, Zhou H D, Yan J Q, D Mandrus and V Keppens 2015 Phys. Rev. B 92 024109
[26] Roy S, Khan N and Mandal P 2016 APL Mater. 4 026102
[27] Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K and Tanaka I 2011 Phys. Rev. B 83 214421
[28] T Katsufuji and Y Tokura 1999 Phys. Rev. B 60 R15021
[29] Gschneidner K A Jr, Pecharsky V K, Pecharsky A O and Zimm C B 1999 Mater. Sci. Forum 315-317 42
[30] Jia Y S, Wang Q, Qi Y and Ling L W 2017 J. Alloys Compd. 726 1132
[31] Oleaga A, Salazar A, Prabhakaran D, Cheng J G and J S Zhou 2012 Phys. Rev. B 85 184425
[32] Wu Y D, Qin Y L, Ma X H, Li R W, Wei Y Y and Zi Z F 2019 J. Alloys Compd. 777 673
[33] Banerjee S K 1964 Phys. Lett. 12 16
[34] Chandra S, Biswas A, Datta S, Ghosh B, Siruguri V, Raychaudhuri A K, M H Phan and Srikanth H 2012 J. Phys.: Condens. Matter 24 366004
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[15] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
No Suggested Reading articles found!