Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 027502    DOI: 10.1088/1674-1056/ac9fbf
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator

Shao-Shan Xu(徐少山)1,2, Qi Fu(付琪)3, Yi-Fan Zhou(周益帆)3, Ling Peng(彭铃)3, Xin-Qiang Gao(高新强)1,3,†, Zhen-Xing Li(李振兴)1, Mao-Qiong Gong(公茂琼)1, Xue-Qiang Dong(董学强)1,2, and Jun Shen(沈俊)1,2,‡
1 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
Abstract  We present a simple hot press-based method for processing La(Fe,Si)$_{13}$-based compounds consisting of La-Fe-Co-Si-C particles and phenolic resin. The magnetic entropy change $\Delta S$ per unit mass for the LaFe$_{10.87}$Co$_{0.63}$Si$_{1.5}$C$_{0.2}$/phenolic resin compounds have nearly the same magnitude with the base materials. With the content of phenolic resin of 5.0 wt%, the compound conductivity is 3.13 W$\cdot$m$^{-1}\cdot$K$^{-1}$. In order to measure the cooling performance of La(Fe,Si)$_{13}$-based compounds, the La(Fe$_{11.6-x}$Co$_{x}$)Si$_{1.4}$C$_{0.15}$ ($x=$0.60, 0.65, 0.75, 0.80, 0.85)/phenolic resin compounds were pressed into thin plates and tested in a hybrid refrigerator that combines the active magnetic refrigeration effect with the Stirling cycle refrigeration effect. The test results showed that a maximum cooling power of 41 W was achieved over a temperature span of 30 K.
Keywords:  magnetocaloric effect      La(Fe,Si)13      phenolic resin      magnetic refrigeration      hybrid refrigerator  
Received:  27 September 2022      Revised:  31 October 2022      Accepted manuscript online:  03 November 2022
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  65.40.gd (Entropy)  
  75.20.En (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52171054 and 52171195) and the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 51925605).
Corresponding Authors:  Xin-Qiang Gao, Jun Shen     E-mail:  xqgao@gia.cas.cn;jshen@mail.ipc.ac.cn

Cite this article: 

Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊) Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator 2023 Chin. Phys. B 32 027502

[1] Benke D, Fries M, Specht M, Wortmann J, Pabst M, Gottschall T, Radulov I, Skokov K, Bevan AI, Prosperi D, Tudor C O, Afiuny P, Zakotnik M and Gutfleisc O 2020 Energy Technol. 8 1901025
[2] Kitanovski A 2020 Adv. Energy Mater. 10 1903741
[3] Tang X, Sepehri-Amin H, Terada N, Martin-Cid A, Kurniawan I, Kobayashi S, Kotani Y, Takeya H, Lai J, Matsushita Y, Ohkubo T, Miura Y, Nakamura T and Hono K 2022 Nat. Commun. 13 1817
[4] Smith A, Bahl C R H, Bjork R, Engelbrecht K, Nielsen K K and Pryds N 2012 Adv. Energy Mater. 2 1288
[5] Pecharsky V K and Gschneidner K A Jr 1999 J. Magn. Magn. Mater. 200 44
[6] Rowe A M and Barclay J A 2003 J. Appl. Phys. 93 1672
[7] Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494
[8] Pecharsky V K and Gschneidner K A Jr 1997 Appl. Phys. Lett. 70 3299
[9] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853
[10] Zhou H, Long Y, Miraglia S, Porcher F and Zhang H 2022 Rare Metals 41 992
[11] Zhang H, Sun Y J, Li Y W, Wu Y Y, Long Y, Shen J, Hu F X, Sun J R and Shen B G 2015 J. Appl. Phys. 117 063902
[12] Campos A D, Rocco D L, Carvalho A M G, Caron L, Coelho A A, Gama S, Silva L M D, Gandra F C G, Santos A O D, Cardoso L P, Ranke P J V and Oliveira N A D 2006 Nat. Mater. 5 802
[13] Tegus O, Brück E, Buschow K H J and Boer F R D 2002 Nature 415 150
[14] Aliev A M, Khanov L N, Gamzatov A G, Batdalov A B, Kurbanova D R, Yanushkevich K I and Govor G A 2021 Appl. Phys. Lett. 118 072404
[15] Cong D Y, Huang L, Hardy V, Bourgault D, Sun X M, Nie Z H, Wang M G, Ren Y, Entel P and Wang Y D 2018 Acta Mater. 146 142
[16] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L and Planes A 2005 Nat. Mater. 4 450
[17] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[18] Eerenstein W, Wiora M, Prieto J L, Scott J F and Mathur N D 2007 Nat. Mater. 6 348
[19] Moya X, Hueso L E, Maccherozzi F, Tovstolytkin A I, Podyalovskii D I, Ducati C, Phillips L C, Ghidini M, Hovorka O, Berger A, Vickers M E, Defay E, Dhesi S S and Mathur N D 2013 Nat. Mater. 12 52
[20] Zhang X X, Tejada J, Xin Y, Sun G F, Wong K W and Bohigas X 1996 Appl. Phys. Lett. 69 3596
[21] Kavita S, Alagusoundarya M, Ramakrishna V V, Suresh V, Pramod Bhatt, Srimathif P, Archanaa R, Debendranath Kar, Tiju Thomas and Gopalana R 2022 J. Alloys Compd. 895 162597
[22] Krautz M, Skokov K, Gottschall T, Teixeirac C S, Waske A, Liu J, Schultz L and Gutfleisch O 2014 J. Alloys Compd. 598 27
[23] Franco V, Law J Y, Conde A, Brabander V, Karpenkov D Y, Radulov I, Skokov K and Gutfleisch O 2017 J. Phys. D: Appl. Phys. 50 414004
[24] Zhang H, Hu F X, Sun J R and Shen B G 2013 Sci. China-Phys. Mech. Astron. 56 2302
[25] Zhang M K, Abdelaziz O, Momen M A and Abu-Heiba A 2017 Sci. Rep. 7 13962
[26] Paul-Boncour V and Bessais L 2021 Magnetochemistry 7 13
[27] Nielsen K K and Engelbrecht K 2012 J. Phys. D: Appl. Phys. 45 145001
[28] Yu B F, Liu M, Egolf P W and Kitanovski A 2010 Int. J. Refrig. 33 1029
[29] Fujita A, Koiwai S, Fujieda S, Fukamichi K, Kobayashi T, Tsuji H, Kaji S and Saito A T 2009 J. Appl. Phys. 105 07A936
[30] Saito A T, Kobayashi T and Tsuji H 2007 J. Magn. Magn. Mater. 310 2808
[31] Katter M, Zellmann V and Barcza A 2010 4$th Int. Conference on Magnetic Refrigeration at Room Temperature, Baotou, China, August 23-28, 2010 p. 49
[32] Moore J D, Klemm D, Lindackers D, Grasemann S, Trager R, Eckert J, Lober L, Scudino S, Katter M, Barcza A, Skokov K P and Gutfleisch O 2013 J. Appl. Phys. 114 043907
[33] Tian N, Zhang N N, You C Y, Gao B and He J 2013 J. Appl. Phys. 113 103909
[34] Lyubina J, Schafer R, Martin N, Schultz L and Gutfleisch O 2010 Adv. Mater. 22 3735
[35] Shao Y Y, Liu J, Zhang M X, Aru Yan, Konstantin P.Skokov, Dmitriy Yu Karpenkov and Oliver Gutfleisch 2017 Acta Mater. 125 506
[36] Lyubina J, Hannemann U, Cohen L F and Ryan M P 2012 Adv. Energy Mater. 2 1323
[37] Cohn J L, Neumeier J J, Popoviciu C P, McClellan K J and Leventouri T 1997 Phys. Rev. B 56 R8495
[38] Fujieda S, Hasegawa Y, Fujita A and Fukamichi K 2004 J. Appl. Phys. 95 2429
[39] Gao X Q, Shen J, He X N, Tang C C, Li K, Dai W, Li Z X, Jia J C, Gong M Q and Wu J F 2016 Int. J. Refrigeration 67 330
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[3] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[4] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[5] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[6] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!