CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator |
Shao-Shan Xu(徐少山)1,2, Qi Fu(付琪)3, Yi-Fan Zhou(周益帆)3, Ling Peng(彭铃)3, Xin-Qiang Gao(高新强)1,3,†, Zhen-Xing Li(李振兴)1, Mao-Qiong Gong(公茂琼)1, Xue-Qiang Dong(董学强)1,2, and Jun Shen(沈俊)1,2,‡ |
1 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China |
|
|
Abstract We present a simple hot press-based method for processing La(Fe,Si)$_{13}$-based compounds consisting of La-Fe-Co-Si-C particles and phenolic resin. The magnetic entropy change $\Delta S$ per unit mass for the LaFe$_{10.87}$Co$_{0.63}$Si$_{1.5}$C$_{0.2}$/phenolic resin compounds have nearly the same magnitude with the base materials. With the content of phenolic resin of 5.0 wt%, the compound conductivity is 3.13 W$\cdot$m$^{-1}\cdot$K$^{-1}$. In order to measure the cooling performance of La(Fe,Si)$_{13}$-based compounds, the La(Fe$_{11.6-x}$Co$_{x}$)Si$_{1.4}$C$_{0.15}$ ($x=$0.60, 0.65, 0.75, 0.80, 0.85)/phenolic resin compounds were pressed into thin plates and tested in a hybrid refrigerator that combines the active magnetic refrigeration effect with the Stirling cycle refrigeration effect. The test results showed that a maximum cooling power of 41 W was achieved over a temperature span of 30 K.
|
Received: 27 September 2022
Revised: 31 October 2022
Accepted manuscript online: 03 November 2022
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
65.40.gd
|
(Entropy)
|
|
75.20.En
|
(Metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52171054 and 52171195) and the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 51925605). |
Corresponding Authors:
Xin-Qiang Gao, Jun Shen
E-mail: xqgao@gia.cas.cn;jshen@mail.ipc.ac.cn
|
Cite this article:
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊) Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator 2023 Chin. Phys. B 32 027502
|
[1] Benke D, Fries M, Specht M, Wortmann J, Pabst M, Gottschall T, Radulov I, Skokov K, Bevan AI, Prosperi D, Tudor C O, Afiuny P, Zakotnik M and Gutfleisc O 2020 Energy Technol. 8 1901025 [2] Kitanovski A 2020 Adv. Energy Mater. 10 1903741 [3] Tang X, Sepehri-Amin H, Terada N, Martin-Cid A, Kurniawan I, Kobayashi S, Kotani Y, Takeya H, Lai J, Matsushita Y, Ohkubo T, Miura Y, Nakamura T and Hono K 2022 Nat. Commun. 13 1817 [4] Smith A, Bahl C R H, Bjork R, Engelbrecht K, Nielsen K K and Pryds N 2012 Adv. Energy Mater. 2 1288 [5] Pecharsky V K and Gschneidner K A Jr 1999 J. Magn. Magn. Mater. 200 44 [6] Rowe A M and Barclay J A 2003 J. Appl. Phys. 93 1672 [7] Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494 [8] Pecharsky V K and Gschneidner K A Jr 1997 Appl. Phys. Lett. 70 3299 [9] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853 [10] Zhou H, Long Y, Miraglia S, Porcher F and Zhang H 2022 Rare Metals 41 992 [11] Zhang H, Sun Y J, Li Y W, Wu Y Y, Long Y, Shen J, Hu F X, Sun J R and Shen B G 2015 J. Appl. Phys. 117 063902 [12] Campos A D, Rocco D L, Carvalho A M G, Caron L, Coelho A A, Gama S, Silva L M D, Gandra F C G, Santos A O D, Cardoso L P, Ranke P J V and Oliveira N A D 2006 Nat. Mater. 5 802 [13] Tegus O, Brück E, Buschow K H J and Boer F R D 2002 Nature 415 150 [14] Aliev A M, Khanov L N, Gamzatov A G, Batdalov A B, Kurbanova D R, Yanushkevich K I and Govor G A 2021 Appl. Phys. Lett. 118 072404 [15] Cong D Y, Huang L, Hardy V, Bourgault D, Sun X M, Nie Z H, Wang M G, Ren Y, Entel P and Wang Y D 2018 Acta Mater. 146 142 [16] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L and Planes A 2005 Nat. Mater. 4 450 [17] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620 [18] Eerenstein W, Wiora M, Prieto J L, Scott J F and Mathur N D 2007 Nat. Mater. 6 348 [19] Moya X, Hueso L E, Maccherozzi F, Tovstolytkin A I, Podyalovskii D I, Ducati C, Phillips L C, Ghidini M, Hovorka O, Berger A, Vickers M E, Defay E, Dhesi S S and Mathur N D 2013 Nat. Mater. 12 52 [20] Zhang X X, Tejada J, Xin Y, Sun G F, Wong K W and Bohigas X 1996 Appl. Phys. Lett. 69 3596 [21] Kavita S, Alagusoundarya M, Ramakrishna V V, Suresh V, Pramod Bhatt, Srimathif P, Archanaa R, Debendranath Kar, Tiju Thomas and Gopalana R 2022 J. Alloys Compd. 895 162597 [22] Krautz M, Skokov K, Gottschall T, Teixeirac C S, Waske A, Liu J, Schultz L and Gutfleisch O 2014 J. Alloys Compd. 598 27 [23] Franco V, Law J Y, Conde A, Brabander V, Karpenkov D Y, Radulov I, Skokov K and Gutfleisch O 2017 J. Phys. D: Appl. Phys. 50 414004 [24] Zhang H, Hu F X, Sun J R and Shen B G 2013 Sci. China-Phys. Mech. Astron. 56 2302 [25] Zhang M K, Abdelaziz O, Momen M A and Abu-Heiba A 2017 Sci. Rep. 7 13962 [26] Paul-Boncour V and Bessais L 2021 Magnetochemistry 7 13 [27] Nielsen K K and Engelbrecht K 2012 J. Phys. D: Appl. Phys. 45 145001 [28] Yu B F, Liu M, Egolf P W and Kitanovski A 2010 Int. J. Refrig. 33 1029 [29] Fujita A, Koiwai S, Fujieda S, Fukamichi K, Kobayashi T, Tsuji H, Kaji S and Saito A T 2009 J. Appl. Phys. 105 07A936 [30] Saito A T, Kobayashi T and Tsuji H 2007 J. Magn. Magn. Mater. 310 2808 [31] Katter M, Zellmann V and Barcza A 2010 4$th Int. Conference on Magnetic Refrigeration at Room Temperature, Baotou, China, August 23-28, 2010 p. 49 [32] Moore J D, Klemm D, Lindackers D, Grasemann S, Trager R, Eckert J, Lober L, Scudino S, Katter M, Barcza A, Skokov K P and Gutfleisch O 2013 J. Appl. Phys. 114 043907 [33] Tian N, Zhang N N, You C Y, Gao B and He J 2013 J. Appl. Phys. 113 103909 [34] Lyubina J, Schafer R, Martin N, Schultz L and Gutfleisch O 2010 Adv. Mater. 22 3735 [35] Shao Y Y, Liu J, Zhang M X, Aru Yan, Konstantin P.Skokov, Dmitriy Yu Karpenkov and Oliver Gutfleisch 2017 Acta Mater. 125 506 [36] Lyubina J, Hannemann U, Cohen L F and Ryan M P 2012 Adv. Energy Mater. 2 1323 [37] Cohn J L, Neumeier J J, Popoviciu C P, McClellan K J and Leventouri T 1997 Phys. Rev. B 56 R8495 [38] Fujieda S, Hasegawa Y, Fujita A and Fukamichi K 2004 J. Appl. Phys. 95 2429 [39] Gao X Q, Shen J, He X N, Tang C C, Li K, Dai W, Li Z X, Jia J C, Gong M Q and Wu J F 2016 Int. J. Refrigeration 67 330 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|