Special Issue:
TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
|
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research |
Prev
Next
|
|
|
Multicaloric and coupled-caloric effects |
Jia-Zheng Hao(郝嘉政)1,2, Feng-Xia Hu(胡凤霞)2,3,4, Zi-Bing Yu(尉紫冰)2,3, Fei-Ran Shen(沈斐然)2,3, Hou-Bo Zhou(周厚博)2,3, Yi-Hong Gao(高怡红)2,3, Kai-Ming Qiao(乔凯明)2,3, Jia Li(李佳)2,3, Cheng Zhang(张丞)2,3, Wen-Hui Liang(梁文会)2,3, Jing Wang(王晶)2,3,5, Jun He(何峻)1, Ji-Rong Sun(孙继荣)2,3,4, Bao-Gen Shen(沈保根)2,3,4 |
1 Division of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China; 2 Beijing National Laboratory for Condensed Matter Physics&State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Fujian Innovation Academy, Chinese Academy of Sciences, Fuzhou 350108, China |
|
|
Abstract The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field. For practical applications, the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices. Here, the state of the art in multi-field driven multicaloric effect is reviewed. The phenomenology and fundamental thermodynamics of the multicaloric effect are well established. A number of theoretical and experimental research approaches are covered. At present, the theoretical understanding of the multicaloric effect is thorough. However, due to the limitation of the current experimental technology, the experimental approach is still in progress. All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects. Finally, the viewpoint of further developments is presented.
|
Received: 01 February 2020
Revised: 20 February 2020
Accepted manuscript online:
|
PACS:
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
65.40.gd
|
(Entropy)
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0702702, 2019YFA0704904, 2018YFA0305704, 2017YFA0206300, 2017YFA0303601, and 2016YFB0700903), the National Natural Science Foundation of China (Grant Nos. U1832219, 51531008, 51771223, 51590880, 51971240, 11674378, 11934016, and 11921004), and the Key Program and Strategic Priority Research Program (B) of the Chinese Academy of Sciences. |
Corresponding Authors:
Feng-Xia Hu, Jun He
E-mail: fxhu@iphy.ac.cn;hejun@cisri.com.cn
|
Cite this article:
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根) Multicaloric and coupled-caloric effects 2020 Chin. Phys. B 29 047504
|
[1] |
GschneidnerJr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
|
[2] |
Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Prog. Mater Sci. 93 112
|
[3] |
Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
|
[4] |
Li L W and Yan M 2020 J. Alloys Compd. 823 153810
|
[5] |
Zheng X Q and Shen B G 2017 Chin. Phys. B 26 027501
|
[6] |
Li Z X, Li K, Shen J, Dai W, Gao X Q, Guo X H and Gong M Q 2017 Acta Phys. Sin. 66 110701 (in Chinese)
|
[7] |
Neese B, Chu B, Lu S G, Wang Y, Furman E and Zhang Q M 2008 Science 321 821
|
[8] |
Manosa L and Planes A 2017 Adv. Mater. 29 1603607
|
[9] |
Tušek J, Engelbrecht K, Eriksen D, Dall'Olio S, Tušek J and Pryds N 2016 Nat. Ener. 1 16134
|
[10] |
Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
|
[11] |
Morellon L, Arnold Z, Magen C, Ritter C, Prokhnenko O, Skorokhod Y, Algarabel P A, Ibarra M R and Kamarad J 2004 Phys. Rev. Lett. 93 137201
|
[12] |
Hao J Z, Hu F X, Wang J T, Shen F R, Yu Z B, Zhou H B, Wu H, Huang Q Z, Qiao K M, Wang J, He J, He L H, Sun J R and Shen B G 2020 Chem. Mater.
|
[13] |
Samanta T, Lepkowski D L, Saleheen A U, Shankar A, Prestigiacomo J, Dubenko I, Quetz A, Oswald I W H, McCandless G T, Chan J Y, Adams P W, Young D P, Ali N and Stadler S 2015 Phys. Rev. B 91 020401
|
[14] |
Chauhan A, Patel S and Vaish R 2015 Acta Mater. 97 17
|
[15] |
Liang F X, Hao J Z, Shen F R, Zhou H B, Wang J, Hu F X, He J, Sun J R and Shen B G 2019 APL Mater. 7 051102
|
[16] |
Lisenkov S, Mani B K, Chang C M, Almand J and Ponomareva I 2013 Phys. Rev. B 87 224101
|
[17] |
Stern-Taulats E, Castán T, Planes A, Lewis L H, Barua R, Pramanick S, Majumdar S and Mañosa L 2017 Phys. Rev. B 95 104424
|
[18] |
Pecharsky V K and Gschneidner Jr. K A 1997 Phys. Rev. Lett. 78 4494
|
[19] |
Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
|
[20] |
Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
|
[21] |
Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A, Ochoa-Gamboa R A, Planes A, Mañosa L, González-Alonso D, Stipcich M, Romero R, Ríos-Jara D and Flores-Zúñiga H 2011 Phys. Rev. B 83 174109
|
[22] |
Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
|
[23] |
ul Hassan N, Shah I A, Khan T, Liu J, Gong Y, Miao X and Xu F 2018 Chin. Phys. B 27 037504
|
[24] |
Yang H, Liu J, Li C, Wang G L, Gong Y Y and Xu F 2018 Chin. Phys. B 27 107502
|
[25] |
Bao L F, Huang W D and Ren Y J 2016 Chin. Phys. Lett. 33 077502
|
[26] |
Zhang H, Xing C F, Long K W, Xiao Y N, Tao K, Wang L C and Long Y 2018 Acta Phys. Sin. 67 207501 (in Chinese)
|
[27] |
Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R and Shen B G 2018 Chin. Phys. B 27 067503
|
[28] |
Trung N T, Ou Z Q, Gortenmulder T J, Tegus O, Buschow K H J and Brück E 2009 Appl. Phys. Lett. 94 102513
|
[29] |
Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater 11 620
|
[30] |
Liu Y, Phillips L C, Mattana R, Bibes M, Barthelemy A and Dkhil B 2016 Nat. Commun. 7 11614
|
[31] |
Liu J, Gong Y, You Y, You X, Huang B, Miao X, Xu G, Xu F and Brück E 2019 Acta Mater. 174 450
|
[32] |
Qiao K, Hu F, Liu Y, Li J, Kuang H, Zhang H, Liang W, Wang J, Sun J and Shen B 2019 Nan. Ener 59 285
|
[33] |
Guillou F, Pathak A K, Paudyal D, Mudryk Y, Wilhelm F, Rogalev A and Pecharsky V K 2018 Nat. Commun. 9 2925
|
[34] |
Scheibel F, Gottschall T, Taubel A, Fries M, Skokov K P, Terwey A, Keune W, Ollefs K, Wende H, Farle M, Acet M, Gutfleisch O and Gruner M E 2018 Ener. Techno 6 1397
|
[35] |
Liu Y, Zhang G, Li Q, Bellaiche L, Scott J F, Dkhil B and Wang Q 2016 Phys. Rev. B 94 214113
|
[36] |
Planes A, Castán T and Saxena A 2014 Philos. Mag. 94 1893
|
[37] |
Planes A, Castán T and Saxena A 2016 Philos. Trans. R. Soc. A 374 20150304
|
[38] |
Chauhan A, Patel S and Vaish R 2015 Acta Mater. 89 384
|
[39] |
Li L W 2016 Chin. Phys. B 25 037502
|
[40] |
Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)
|
[41] |
Zhang Y 2019 J. Alloys Compd. 787 1173
|
[42] |
Hao Z H, Wang H Y, Zhang Q and Mo Z J 2018 Acta Phys. Sin. 67 247502 (in Chinese)
|
[43] |
Wu X F, Guo C P, Cheng G, Li C R, Wang J, Du Y S, Rao G H and Du Z M 2019 Chin. Phys. B 28 057502
|
[44] |
Mo Z J, Sun Q L, Shen J, Yang M, Li Y J, Li L, Liu G D, Tang C C and Meng F B 2018 Chin. Phys. B 27 017501
|
[45] |
De Sousa V, Von Ranke P and Gandra F 2011 J. Appl. Phys. 109 063904
|
[46] |
Li L W, Yuan Y, Xu C, Qi Y and Zhou S Q 2017 AIP Adv. 7 056401
|
[47] |
Wang X, Wang L, Ma Q, Sun G, Zhang Y and Cui J 2017 J. Alloys Compd. 694 613
|
[48] |
Chen J, Zheng X Q, Dong Q Y, Sun J R and Shen B G 2011 Appl. Phys. Lett. 99
|
[49] |
Delyagin N N, Krylov V I and Rozantsev I N 2007 J. Magn. Magn. Mater. 308 74
|
[50] |
Chen J, Zheng X Q, Dong Q Y, Sun J R and Shen B G 2011 Appl. Phys. Lett. 99 122503
|
[51] |
Zheng X Q, Chen J, Xu Z Y, Mo Z J, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 115 17A938
|
[52] |
Ma Y F, Tang B Z, Xia L and Ding D 2016 Chin. Phys. Lett. 33 126101
|
[53] |
Wu C, Ding D and Xia L 2016 Chin. Phys. Lett. 33 016102
|
[54] |
Chen X and Zhao M H 2018 Acta Phys. Sin. 67 197501 (in Chinese)
|
[55] |
Zhang H and Shen B G 2015 Chin. Phys. B 24 127504
|
[56] |
Dong Q, Shen B, Chen J, Shen J, Zhang H and Sun J 2009 J. Appl. Phys. 105 07A305
|
[57] |
Klimczak M and Talik E 2010 J. Phys.: Conf. Ser. 200 092009
|
[58] |
Kaštil J, Javorsk#253; P, Kamarad J, Diop L, Isnard O and Arnold Z 2014 Intermetallics 54 15
|
[59] |
Fickenscher T, Rodewald U C, Niepmann D, Mishra R, Eschen M and Pöttgen R 2005 Z. Naturforsch. B 60 271
|
[60] |
Ding D, Zhang Y Q and Xia L 2015 Chin. Phys. Lett. 32 106101
|
[61] |
Dong X, Feng J, Yi Y and Li L 2018 J. Appl. Phys. 124 093901
|
[62] |
Fisher I, Islam Z and Canfield P 1999 J. Magn. Magn. Mater. 202 1
|
[63] |
Hermes W, Rodewald U C and Pöttgen R 2010 J. Appl. Phys. 108 113919
|
[64] |
Li L, Niehaus O, Kersting M and Pöttgen R 2015 Intermetallics 62 17
|
[65] |
Li L, Nishimura K, Kadonaga M, Qian Z and Huo D 2011 J. Appl. Phys. 110 043912
|
[66] |
Lisenkov S and Ponomareva I 2012 Phys. Rev. B 86 104103
|
[67] |
Ponomareva I and Lisenkov S 2012 Phys. Rev. Lett. 108 167604
|
[68] |
Planes A, Stern-Taulats E, Castán T, Vives E, Mañosa L and Saxena A 2015 Mater. Toda.: Procee 2 S477
|
[69] |
Meng H, Li B, Ren W and Zhang Z 2013 Phys. Lett. A 377 567
|
[70] |
Nikitin S A, Myalikgulyev G, Tishin A M, Annaorazov M P, Asatryan K A and Tyurin A L 1990 Phys. Lett. A 148 363
|
[71] |
Nikitin S A, Myalikgulyev G, Annaorazov M P, Tyurin A L, Myndyev R W and Akopyan S A 1992 Phys. Lett. A 171 234
|
[72] |
Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J L, Pramanick S, Majumdar S, Frontera C and Mañosa L 2014 Phys. Rev. B 89 214105
|
[73] |
Kübler J, William A R and Sommers C B 1983 Phys. Rev. B 28 1745
|
[74] |
Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
|
[75] |
Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L and Planes A 2005 Nat. Mater. 4 450
|
[76] |
Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2006 Appl. Phys. Lett. 89 162503
|
[77] |
Sharma V K, Chattopadhyay M K and Roy S B 2011 J. Phys.: Condens Matter 23 366001
|
[78] |
Quetz A, Koshkid'ko Y S, Titov I, Rodionov I, Pandey S, Aryal A, Ibarra-Gaytan P J, Prudnikov V, Granovsky A, Dubenko I, Samanta T, Cwik J, Sánchez Llamazares J L, Stadler S, Lähderanta E and Ali N 2016 J. Alloys Compd. 683 139
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|