CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction |
Pengfei Liu(刘鹏飞)1,2, Jie Peng(彭杰)1, Mianqi Xue(薛面起)2, Bosen Wang(王铂森)3 |
1 Hunan Key Laboratory for Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; 2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We revisit the reversible magnetocaloric effect of itinerant ferromagnet Mn3GaC near the ferromagnetic to paramagnetic phase transition by adopting the experimental and theoretical methods and critical behavior of Mn-rich Mn3GaC with an enhanced FM interaction. Landau theory model cannot account for temperature dependent magnetic entropy change which is estimated from thermal magnetic methods only considering magnetoelastic coupling and the electron-electron interaction, apart from molecular mean-field model. Critical behavior is studied by adopting the modified Arrott plot, Kouvel-Fisher plot, and critical isotherm analysis. With these critical exponents, experimental data below and above Tc collapse into two universal branches, fulfilling the single scaling equation m=f±(h), where m and h are renormalized magnetization and field. Critical exponents are confirmed by Widom scaling law and just between mean-field model and three-dimensional Heisenberg model, as the evidence for the existence of long-range ferromagnetic interaction. With increasing the Mn content, Tc increases monotonously and critical exponents increases accordingly. The exchange distance changes from J(r) ~ r-4.68 for x = 0 to J(r) ~ r-4.71 for x = 0.08, respectively, which suggests the competition of the Mn-Mn direct interaction and the itinerant Mn-C-Mn hybridization. The possible mechanism is proposed.
|
Received: 19 January 2020
Revised: 02 March 2020
Accepted manuscript online:
|
PACS:
|
75.20.En
|
(Metals and alloys)
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
Corresponding Authors:
Bosen Wang
E-mail: bswang@iphy.ac.cn
|
Cite this article:
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森) Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction 2020 Chin. Phys. B 29 047503
|
[1] |
Kamishima K, Goto T, Nakagawa H, et al. 2000 Phys. Rev. B 63 024426
|
[2] |
Wang B S, Tong P, Sun Y P, Li L J, Tang W, Lu W J, Zhu X B, Yang Z R and Song W H 2009 Appl. Phys. Lett. 95 222509
|
[3] |
Tohei T, Wada H and Kanomata T 2003 J. Appl. Phys. 94 1800
|
[4] |
Yu M H, Lewis L H and Moodenbaugh A R 2003 J. Appl. Phys. 93 10128
|
[5] |
Tohei T, Wada H and Kanomata T 2004 J. Magn. Magn. Mater. 272 E585
|
[6] |
Wang B S, Tong P, Sun Y P, Luo X, Zhu X B, Zhang S B, Zhu X D, Yang Z R, Dai J M and Song W H 2009 Europhys. Lett. 85 47004
|
[7] |
Takenaka K, Asano K, Misawa M and Takagi H 2008 Appl. Phys. Lett. 92 011927
|
[8] |
Tong P, Louca D, Kingdom G, Liobet A, Lin J C and Sun Y P 2013 Appl. Phys. Lett. 102 041908
|
[9] |
Iikubo S, Kodama K, Takenaka K, et al. 2008 Phys. Rev. Lett. 101 205901
|
[10] |
Takenaka K and Takagi H 2009 Appl. Phys. Lett. 94 131904
|
[11] |
J Huang R, Li L F, Cai F S, Xu X D and Qian L H 2008 Appl. Phys. Lett. 93 081902
|
[12] |
Ding L, Wang C, Sun Y, Colin C V and Chu L H 2015 J. Appl. Phys. 117 213915
|
[13] |
Guo X G, Lin J C, Tong P, Wang M, Wu Y, Yang C, Song B, Lin S, Song W H and Sun Y P 2015 Appl. Phys. Lett. 107 202406
|
[14] |
Shimizu T, Shibayama T, Asano K and Takenaka 2012 J. Appl. Phys. 111 07A903
|
[15] |
Guo X G, Tong P, Lin J C, Yang C, Zhang K, Lin S, Song W H and Sun Y P 2017 Appl. Phys. Lett. 110 062405
|
[16] |
Asano K, Koyama K and Takenaka K 2008 Appl. Phys. Lett. 92 161909
|
[17] |
Kim W S, Chi E O, et al. 2001 Solid State Commun. 119 507
|
[18] |
Shim J H, Kwon S K and Min B I 2002 Phys. Rev. B 66 020406(R)
|
[19] |
Fruchart D, Bertaut E F, Sayetat F, et al. 1970 Solid State Commun. 8 91
|
[20] |
Wang B S, Tong P, Sun Y P, Zhu X B, Luo X, Li G, Song W H, Yang Z Rand Dai J M 2009 J. Appl. Phys. 105 083907
|
[21] |
Cabassi R, Bolzoni F, Gauzzi A and Licci F 2006 Phys. Rev. B 74 184425
|
[22] |
Yang J, Lee Y P and Li Y 2007 Phys. Rev. B 76 054442
|
[23] |
Lin J C, Tong P, Cui D P, Yang C, Yang J, Lin S, Wang B S, Tong W, Zhang L, Zou Y M and Sun Y P 2015 Scr. Rep. 5 7933
|
[24] |
Cui D P, Wang B S, Tong P, Lin J C, Lin S and Sun Y P 2015 J. Magn. Magn. Mater. 382 93
|
[25] |
Zhang L, Wang B S, Sun Y P, Tong P, Fan J Y, Zhang C J, Pi L and Zhang Y H 2012 Phys. Rev. B 85 104419
|
[26] |
Babu P D and Kaul S N 1997 J. Phys.: Condens. Matter 9 7189
|
[27] |
Pramanik A K and Banerjee A 2009 Phys. Rev. B 79 214426
|
[28] |
Yang J, Lee Y P and Li Y 2007 J. Appl. Phys. 102 033913
|
[29] |
Amaral V S and Amaral J S 2004 J. Magn. Magn. Mater. 272-276 2104
|
[30] |
Lu W J, Luo X, Hao C Y, Song W H and Sun Y P 2008 J. Appl. Phys. 104 113908
|
[31] |
Amaral J S, Silva N J O and Amaral V S 2007 Appl. Phys. Lett. 91 172503
|
[32] |
Amaral J S and Amaral V S 2009 Appl. Phys. Lett. 94 042506
|
[33] |
Banerjee S K 1964 Phys. Lett. 12 16
|
[34] |
Landau L D and Lifshitz E M 1980 Statistical Physica 3rd Edn. (Oxford: Pergamon)
|
[35] |
Amaral J S, Reis M S, et al. 2005 J. Magn. Magn. Mater. 290-291 686
|
[36] |
Yang J, Sun Y P, Song W H and Lee Y P 2006 J. Appl. Phys. 100 123701
|
[37] |
Bean C P and Rodbell D S 1962 Phys. Rev. 126 104
|
[38] |
Menyuk N, Dwight K and Reed T B 1971 Phys. Rev. B 3 1689
|
[39] |
Gschneidner K A and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387
|
[40] |
Yang F Y, Chien C L, Li X W, Xiao G and Gupta A 2001 Phys. Rev. B 63 092403
|
[41] |
Yanagihara H, Cheong W, et al. 2002 Phys. Rev. B 65 092411
|
[42] |
Gschneidner Jr. K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
|
[43] |
Tishin A M and Spichkin Y I 2003 The Magnetocaloric Effect and its Applications (Bristol: Institute of Physics Publishing)
|
[44] |
Stanley H E 1972 Introduction to Phase Transitions and Critical Phenomena (Oxford: Clarendon Press)
|
[45] |
Fisher M E 1967 Rep. Prog. Phys. 30 615
|
[46] |
Mira J, Rivas J, et al. 1999 Phys. Rev. B 60 2998
|
[47] |
Kouvel J S and Fisher M E 1964 Phys. Rev. 136 A1626
|
[48] |
Widom B 1964 J. Chem. Phys. 41 1633
|
[49] |
Widom B 1965 J. Chem. Phys. 43 3898
|
[50] |
Stanley H E 1999 Rev. Mod. Phys. 71 S358
|
[51] |
Huang K 1987 Statistical Mechanics 2nd Edn. (New York: Wiley)
|
[52] |
Le J C and Zinn-Justin J 1980 Phys. Rev. B 21 3976
|
[53] |
Fisher M E, Ma S K and Nickel B G 1972 Phys. Rev. Lett. 29 917
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|