Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047503    DOI: 10.1088/1674-1056/ab7da1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction

Pengfei Liu(刘鹏飞)1,2, Jie Peng(彭杰)1, Mianqi Xue(薛面起)2, Bosen Wang(王铂森)3
1 Hunan Key Laboratory for Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We revisit the reversible magnetocaloric effect of itinerant ferromagnet Mn3GaC near the ferromagnetic to paramagnetic phase transition by adopting the experimental and theoretical methods and critical behavior of Mn-rich Mn3GaC with an enhanced FM interaction. Landau theory model cannot account for temperature dependent magnetic entropy change which is estimated from thermal magnetic methods only considering magnetoelastic coupling and the electron-electron interaction, apart from molecular mean-field model. Critical behavior is studied by adopting the modified Arrott plot, Kouvel-Fisher plot, and critical isotherm analysis. With these critical exponents, experimental data below and above Tc collapse into two universal branches, fulfilling the single scaling equation m=f±(h), where m and h are renormalized magnetization and field. Critical exponents are confirmed by Widom scaling law and just between mean-field model and three-dimensional Heisenberg model, as the evidence for the existence of long-range ferromagnetic interaction. With increasing the Mn content, Tc increases monotonously and critical exponents increases accordingly. The exchange distance changes from J(r) ~ r-4.68 for x = 0 to J(r) ~ r-4.71 for x = 0.08, respectively, which suggests the competition of the Mn-Mn direct interaction and the itinerant Mn-C-Mn hybridization. The possible mechanism is proposed.
Keywords:  magnetocaloric effect      critical behavior      Mn3GaC  
Received:  19 January 2020      Revised:  02 March 2020      Accepted manuscript online: 
PACS:  75.20.En (Metals and alloys)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Corresponding Authors:  Bosen Wang     E-mail:  bswang@iphy.ac.cn

Cite this article: 

Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森) Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction 2020 Chin. Phys. B 29 047503

[1] Kamishima K, Goto T, Nakagawa H, et al. 2000 Phys. Rev. B 63 024426
[2] Wang B S, Tong P, Sun Y P, Li L J, Tang W, Lu W J, Zhu X B, Yang Z R and Song W H 2009 Appl. Phys. Lett. 95 222509
[3] Tohei T, Wada H and Kanomata T 2003 J. Appl. Phys. 94 1800
[4] Yu M H, Lewis L H and Moodenbaugh A R 2003 J. Appl. Phys. 93 10128
[5] Tohei T, Wada H and Kanomata T 2004 J. Magn. Magn. Mater. 272 E585
[6] Wang B S, Tong P, Sun Y P, Luo X, Zhu X B, Zhang S B, Zhu X D, Yang Z R, Dai J M and Song W H 2009 Europhys. Lett. 85 47004
[7] Takenaka K, Asano K, Misawa M and Takagi H 2008 Appl. Phys. Lett. 92 011927
[8] Tong P, Louca D, Kingdom G, Liobet A, Lin J C and Sun Y P 2013 Appl. Phys. Lett. 102 041908
[9] Iikubo S, Kodama K, Takenaka K, et al. 2008 Phys. Rev. Lett. 101 205901
[10] Takenaka K and Takagi H 2009 Appl. Phys. Lett. 94 131904
[11] J Huang R, Li L F, Cai F S, Xu X D and Qian L H 2008 Appl. Phys. Lett. 93 081902
[12] Ding L, Wang C, Sun Y, Colin C V and Chu L H 2015 J. Appl. Phys. 117 213915
[13] Guo X G, Lin J C, Tong P, Wang M, Wu Y, Yang C, Song B, Lin S, Song W H and Sun Y P 2015 Appl. Phys. Lett. 107 202406
[14] Shimizu T, Shibayama T, Asano K and Takenaka 2012 J. Appl. Phys. 111 07A903
[15] Guo X G, Tong P, Lin J C, Yang C, Zhang K, Lin S, Song W H and Sun Y P 2017 Appl. Phys. Lett. 110 062405
[16] Asano K, Koyama K and Takenaka K 2008 Appl. Phys. Lett. 92 161909
[17] Kim W S, Chi E O, et al. 2001 Solid State Commun. 119 507
[18] Shim J H, Kwon S K and Min B I 2002 Phys. Rev. B 66 020406(R)
[19] Fruchart D, Bertaut E F, Sayetat F, et al. 1970 Solid State Commun. 8 91
[20] Wang B S, Tong P, Sun Y P, Zhu X B, Luo X, Li G, Song W H, Yang Z Rand Dai J M 2009 J. Appl. Phys. 105 083907
[21] Cabassi R, Bolzoni F, Gauzzi A and Licci F 2006 Phys. Rev. B 74 184425
[22] Yang J, Lee Y P and Li Y 2007 Phys. Rev. B 76 054442
[23] Lin J C, Tong P, Cui D P, Yang C, Yang J, Lin S, Wang B S, Tong W, Zhang L, Zou Y M and Sun Y P 2015 Scr. Rep. 5 7933
[24] Cui D P, Wang B S, Tong P, Lin J C, Lin S and Sun Y P 2015 J. Magn. Magn. Mater. 382 93
[25] Zhang L, Wang B S, Sun Y P, Tong P, Fan J Y, Zhang C J, Pi L and Zhang Y H 2012 Phys. Rev. B 85 104419
[26] Babu P D and Kaul S N 1997 J. Phys.: Condens. Matter 9 7189
[27] Pramanik A K and Banerjee A 2009 Phys. Rev. B 79 214426
[28] Yang J, Lee Y P and Li Y 2007 J. Appl. Phys. 102 033913
[29] Amaral V S and Amaral J S 2004 J. Magn. Magn. Mater. 272-276 2104
[30] Lu W J, Luo X, Hao C Y, Song W H and Sun Y P 2008 J. Appl. Phys. 104 113908
[31] Amaral J S, Silva N J O and Amaral V S 2007 Appl. Phys. Lett. 91 172503
[32] Amaral J S and Amaral V S 2009 Appl. Phys. Lett. 94 042506
[33] Banerjee S K 1964 Phys. Lett. 12 16
[34] Landau L D and Lifshitz E M 1980 Statistical Physica 3rd Edn. (Oxford: Pergamon)
[35] Amaral J S, Reis M S, et al. 2005 J. Magn. Magn. Mater. 290-291 686
[36] Yang J, Sun Y P, Song W H and Lee Y P 2006 J. Appl. Phys. 100 123701
[37] Bean C P and Rodbell D S 1962 Phys. Rev. 126 104
[38] Menyuk N, Dwight K and Reed T B 1971 Phys. Rev. B 3 1689
[39] Gschneidner K A and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387
[40] Yang F Y, Chien C L, Li X W, Xiao G and Gupta A 2001 Phys. Rev. B 63 092403
[41] Yanagihara H, Cheong W, et al. 2002 Phys. Rev. B 65 092411
[42] Gschneidner Jr. K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[43] Tishin A M and Spichkin Y I 2003 The Magnetocaloric Effect and its Applications (Bristol: Institute of Physics Publishing)
[44] Stanley H E 1972 Introduction to Phase Transitions and Critical Phenomena (Oxford: Clarendon Press)
[45] Fisher M E 1967 Rep. Prog. Phys. 30 615
[46] Mira J, Rivas J, et al. 1999 Phys. Rev. B 60 2998
[47] Kouvel J S and Fisher M E 1964 Phys. Rev. 136 A1626
[48] Widom B 1964 J. Chem. Phys. 41 1633
[49] Widom B 1965 J. Chem. Phys. 43 3898
[50] Stanley H E 1999 Rev. Mod. Phys. 71 S358
[51] Huang K 1987 Statistical Mechanics 2nd Edn. (New York: Wiley)
[52] Le J C and Zinn-Justin J 1980 Phys. Rev. B 21 3976
[53] Fisher M E, Ma S K and Nickel B G 1972 Phys. Rev. Lett. 29 917
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[10] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[11] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[12] Critical behavior in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Tina Raoufi, Yinina Ma(马怡妮娜), Young Sun(孙阳). Chin. Phys. B, 2020, 29(6): 067503.
[13] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[14] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[15] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
No Suggested Reading articles found!