Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 027503    DOI: 10.1088/1674-1056/ac65ef
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound

Zhaojun Mo(莫兆军)1,†, Jianjian Gong(巩建建)1,3, Huicai Xie(谢慧财)1, Lei Zhang(张磊)1, Qi Fu(付琪)1, Xinqiang Gao(高新强)1, Zhenxing Li(李振兴)1, and Jun Shen(沈俊)1,2,‡
1 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China;
2 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
Abstract  Antiferromagnetic LiErF4 has attracted extensive attention due to its dipolar interaction domination and quantum fluctuations action. In the present work, the crystal structure, cryogenic magnetic properties, and magnetocaloric effect (MCE) of polycrystalline LiErF4 compound are investigated. Crystallographic study shows that the compound crystallizes in the tetragonal scheelite structure with I41/a space group. It exhibits an antiferromagnetic (AFM) phase transition around 0.4 K, accompanied by a giant cryogenic MCE. At 1.3 K, the maximum values of magnetic entropy changes are 24.3 J/kg·K, 33.1 J/kg·K, and 49.0 J/kg·K under the low magnetic field change of 0-0.6 T, 0-1 T, and 0-2 T, respectively. The giant MCE observed above Néel temperature TN is probably due to the strong quantum fluctuations, which cause a large ratio of the unreleased magnetic entropy existing above the phase transition temperature. The outstanding low-field MCE below 2 K makes the LiErF4 compound an attractive candidate for the magnetic refrigeration at the ultra-low temperature.
Keywords:  LiErF4      magnetocaloric effect      ultra-low temperature  
Received:  25 January 2022      Revised:  05 April 2022      Accepted manuscript online:  11 April 2022
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.47.Pq (Other materials)  
Fund: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 51925605), the National Natural Science Foundation of China (Grant No. 52171195), the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-CN-2021-3), the Basic Frontier Scientific Research Program of Chinese Academy of Sciences From 0 to 1 Original Innovation Project (Grant No. ZDBS-LY-JSC017), and the Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20200042).
Corresponding Authors:  Zhaojun Mo, Jun Shen     E-mail:  mozhaojun@gia.cas.cn;jshen@mail.ipc.ac.cn

Cite this article: 

Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊) Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound 2023 Chin. Phys. B 32 027503

[1] Shirron P J, Kimball M O, Fixsen D J, Kogut A J, Li X Y and DiPirro M J 2012 Cryogenics 52 140
[2] Tao C and Li P K 2018 Chem. - Asian J. 13 2834
[3] Tokiwa Y, Bachus S, Kavita K, Jesche A, Tsirlin A A and Gegenwart P 2021 Commun. Mater. 2 42
[4] Xia M J, Shen S P, Lu J, Sun Y and Li R K 2018 Chem. - Eur. J. 24 3147
[5] Yayama H, Hatta Y, Makimoto Y and Tomokiyo A 2000 Jpn. J. Appl. Phys. 39 4220
[6] Debye P 1926 Ann. Phys. 386 1154
[7] Pobell F 2007 Matter and Methods at Low Temperatures (Berlin, Heidelberg: Springer)
[8] Giauque W F 1927 J. Am. Chem. Soc. 49 1864
[9] Jeong S 2014 Cryogenics 62 193
[10] Daudin B, Lagnier R and Salce B 1982 J. Magn. Magn. Mater. 27 315
[11] Tishin A M and Spichkin Y I 2003 The Magnetocaloric Effect and its Applications (Boca Raton: Taylor & Francis Group)
[12] Chen Y C, Prokleska J, Xu W J, Liu J L, Liu J, Zhang W X, Jia J H, Sechovsky V and Tong M L 2015 J. Mater. Chem. C 3 12206
[13] Palacios E, Rodriguez-Velamazan J A, Evangelisti M, McIntyre G J, Lorusso G, Visser D, de Jongh L J and Boatner L A 2014 Phys. Rev. B 90 214423
[14] Yang Y, Zhang Q C, Pan Y Y, Long L S and Zheng L S 2015 Chem. Commun. 51 7317
[15] Chen Y C, Qin L, Meng Z S, Yang D F, Wu C, Fu Z D, Zheng Y Z, Liu J L, Tarasenko R, Orendac M, Prokleska J, Sechovsky V and Tong M L 2014 J. Mater. Chem. A 2 9851
[16] Lorusso G, Sharples J W, Palacios E, Roubeau O, Brechin E K, Sessoli R, Rossin A, Tuna F, McInnes E J L, Collison D and Evangelisti M 2013 Adv. Mater. 25 4653
[17] Zhang Y K, Wu B B, Guo D, Wang J and Ren Z M 2021 Chin. Phys. B 30 017501
[18] Zhang Y K, Zhu J, Li S, Wang J and Ren Z M 2022 J. Mater. Sci. Technol. 102 66
[19] Zhang Y K, Tian Y, Zhang Z Q, Jia Y S, Zhang B, Jiang M Q, Wang J and Ren Z M 2022 Acta Mater. 226 117669
[20] Zhang Y K, Zhu J, Li S, Zhang Z Q, Wang J and Ren Z M 2022 Sci. China Mater. 65 1345
[21] Numazawa T, Kamiya K, Shirron P, DiPirro M and Matsumoto K 2006 AIP Conf. Proc. 850 1579
[22] Xie H C, Tian L, Chen Q, Sun H, Gao X Q, Li Z X, Mo Z J and Shen J 2021 Dalton Trans. 50 17697
[23] Beauvillain P, Renard J P and Hansen P E 1977 J. Phys. C: Solid State Phys. 10 L709
[24] Brown M R, Roots K G and Shand W A 1969 J. Phys. C 2 593
[25] Christensen H P 1979 Phys. Rev. B 19 6564
[26] Hansen P E, Johansson T and Nevald R 1975 Phys. Rev. B 12 5315
[27] Kraemer C, Nikseresht N, Piatek J O, Tsyrulin N, Dalla Piazza B, Kiefer K, Klemke B, Rosenbaum T F, Aeppli G, Gannarelli C, Prokes K, Podlesnyak A, Strassle T, Keller L, Zaharko O, Kramer K W and Ronnow H M 2012 Science 336 1416
[28] Magarino J, Tuchendler J, Beauvillain P and Laursen I 1980 Phys. Rev. B 21 18
[29] Escorne M, Ostorero J, Gouzerh J and Gesland J Y 1995 J. Magn. Magn. Mater. 140 1193
[30] Keller C and Schmutz H 1965 J. Inorg. Nucl. Chem. 27 900
[31] Xun X, Feng S and Xu R 1998 Mater. Res. Bull. 33 369
[32] Mennenga G, Dejongh L J, Huiskamp W J and Laursen I 1984 J. Magn. Magn. Mater. 44 48
[33] Ronnow H M, Jensen J, Parthasarathy R, Aeppli G, Rosenbaum T F, McMorrow D F and Kraemer C 2007 Phys. Rev. B 75 054426
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[3] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[4] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[5] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[6] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[7] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[8] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[9] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[10] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[11] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[12] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[13] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[14] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[15] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
No Suggested Reading articles found!