CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound |
Zhaojun Mo(莫兆军)1,†, Jianjian Gong(巩建建)1,3, Huicai Xie(谢慧财)1, Lei Zhang(张磊)1, Qi Fu(付琪)1, Xinqiang Gao(高新强)1, Zhenxing Li(李振兴)1, and Jun Shen(沈俊)1,2,‡ |
1 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China; 2 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Antiferromagnetic LiErF4 has attracted extensive attention due to its dipolar interaction domination and quantum fluctuations action. In the present work, the crystal structure, cryogenic magnetic properties, and magnetocaloric effect (MCE) of polycrystalline LiErF4 compound are investigated. Crystallographic study shows that the compound crystallizes in the tetragonal scheelite structure with I41/a space group. It exhibits an antiferromagnetic (AFM) phase transition around 0.4 K, accompanied by a giant cryogenic MCE. At 1.3 K, the maximum values of magnetic entropy changes are 24.3 J/kg·K, 33.1 J/kg·K, and 49.0 J/kg·K under the low magnetic field change of 0-0.6 T, 0-1 T, and 0-2 T, respectively. The giant MCE observed above Néel temperature TN is probably due to the strong quantum fluctuations, which cause a large ratio of the unreleased magnetic entropy existing above the phase transition temperature. The outstanding low-field MCE below 2 K makes the LiErF4 compound an attractive candidate for the magnetic refrigeration at the ultra-low temperature.
|
Received: 25 January 2022
Revised: 05 April 2022
Accepted manuscript online: 11 April 2022
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.47.Pq
|
(Other materials)
|
|
Fund: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 51925605), the National Natural Science Foundation of China (Grant No. 52171195), the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-CN-2021-3), the Basic Frontier Scientific Research Program of Chinese Academy of Sciences From 0 to 1 Original Innovation Project (Grant No. ZDBS-LY-JSC017), and the Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20200042). |
Corresponding Authors:
Zhaojun Mo, Jun Shen
E-mail: mozhaojun@gia.cas.cn;jshen@mail.ipc.ac.cn
|
Cite this article:
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊) Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound 2023 Chin. Phys. B 32 027503
|
[1] Shirron P J, Kimball M O, Fixsen D J, Kogut A J, Li X Y and DiPirro M J 2012 Cryogenics 52 140 [2] Tao C and Li P K 2018 Chem. - Asian J. 13 2834 [3] Tokiwa Y, Bachus S, Kavita K, Jesche A, Tsirlin A A and Gegenwart P 2021 Commun. Mater. 2 42 [4] Xia M J, Shen S P, Lu J, Sun Y and Li R K 2018 Chem. - Eur. J. 24 3147 [5] Yayama H, Hatta Y, Makimoto Y and Tomokiyo A 2000 Jpn. J. Appl. Phys. 39 4220 [6] Debye P 1926 Ann. Phys. 386 1154 [7] Pobell F 2007 Matter and Methods at Low Temperatures (Berlin, Heidelberg: Springer) [8] Giauque W F 1927 J. Am. Chem. Soc. 49 1864 [9] Jeong S 2014 Cryogenics 62 193 [10] Daudin B, Lagnier R and Salce B 1982 J. Magn. Magn. Mater. 27 315 [11] Tishin A M and Spichkin Y I 2003 The Magnetocaloric Effect and its Applications (Boca Raton: Taylor & Francis Group) [12] Chen Y C, Prokleska J, Xu W J, Liu J L, Liu J, Zhang W X, Jia J H, Sechovsky V and Tong M L 2015 J. Mater. Chem. C 3 12206 [13] Palacios E, Rodriguez-Velamazan J A, Evangelisti M, McIntyre G J, Lorusso G, Visser D, de Jongh L J and Boatner L A 2014 Phys. Rev. B 90 214423 [14] Yang Y, Zhang Q C, Pan Y Y, Long L S and Zheng L S 2015 Chem. Commun. 51 7317 [15] Chen Y C, Qin L, Meng Z S, Yang D F, Wu C, Fu Z D, Zheng Y Z, Liu J L, Tarasenko R, Orendac M, Prokleska J, Sechovsky V and Tong M L 2014 J. Mater. Chem. A 2 9851 [16] Lorusso G, Sharples J W, Palacios E, Roubeau O, Brechin E K, Sessoli R, Rossin A, Tuna F, McInnes E J L, Collison D and Evangelisti M 2013 Adv. Mater. 25 4653 [17] Zhang Y K, Wu B B, Guo D, Wang J and Ren Z M 2021 Chin. Phys. B 30 017501 [18] Zhang Y K, Zhu J, Li S, Wang J and Ren Z M 2022 J. Mater. Sci. Technol. 102 66 [19] Zhang Y K, Tian Y, Zhang Z Q, Jia Y S, Zhang B, Jiang M Q, Wang J and Ren Z M 2022 Acta Mater. 226 117669 [20] Zhang Y K, Zhu J, Li S, Zhang Z Q, Wang J and Ren Z M 2022 Sci. China Mater. 65 1345 [21] Numazawa T, Kamiya K, Shirron P, DiPirro M and Matsumoto K 2006 AIP Conf. Proc. 850 1579 [22] Xie H C, Tian L, Chen Q, Sun H, Gao X Q, Li Z X, Mo Z J and Shen J 2021 Dalton Trans. 50 17697 [23] Beauvillain P, Renard J P and Hansen P E 1977 J. Phys. C: Solid State Phys. 10 L709 [24] Brown M R, Roots K G and Shand W A 1969 J. Phys. C 2 593 [25] Christensen H P 1979 Phys. Rev. B 19 6564 [26] Hansen P E, Johansson T and Nevald R 1975 Phys. Rev. B 12 5315 [27] Kraemer C, Nikseresht N, Piatek J O, Tsyrulin N, Dalla Piazza B, Kiefer K, Klemke B, Rosenbaum T F, Aeppli G, Gannarelli C, Prokes K, Podlesnyak A, Strassle T, Keller L, Zaharko O, Kramer K W and Ronnow H M 2012 Science 336 1416 [28] Magarino J, Tuchendler J, Beauvillain P and Laursen I 1980 Phys. Rev. B 21 18 [29] Escorne M, Ostorero J, Gouzerh J and Gesland J Y 1995 J. Magn. Magn. Mater. 140 1193 [30] Keller C and Schmutz H 1965 J. Inorg. Nucl. Chem. 27 900 [31] Xun X, Feng S and Xu R 1998 Mater. Res. Bull. 33 369 [32] Mennenga G, Dejongh L J, Huiskamp W J and Laursen I 1984 J. Magn. Magn. Mater. 44 48 [33] Ronnow H M, Jensen J, Parthasarathy R, Aeppli G, Rosenbaum T F, McMorrow D F and Kraemer C 2007 Phys. Rev. B 75 054426 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|