CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7 |
Tina Raoufi1,2, Jincheng He(何金城)1,2, Binbin Wang(王彬彬)1,2, Enke Liu(刘恩克)1,2, and Young Sun(孙阳)1,3,† |
1 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China |
|
|
Abstract We present a study on the magnetocaloric properties of a CaBaCo$_{4}$O$_{7}$ polycrystalline cobaltite along with research on the nature of magnetic phase transition. The magnetization as a function of temperature identifies the ferrimagnetic to paramagnetic transition at a Curie temperature of 60 K. Moreover, a Griffiths-like phase is confirmed in a temperature range above $T_{\rm C}$. The compound undergoes a crossover from the first to second-order ferrimagnetic transformation, as evidenced by the Arrott plots, scaling of the universal entropy curve, and field-dependent magnetic entropy change. The maximum of entropy change is 3 J/kg$\cdot$K for $\Delta H = 7$ T at ${T}_{\rm C}$, and a broadening of the entropy peak with increasing magnetic field indicates a field-induced transition above $T_{\rm C}$. The analysis of the magnetic entropy change using the Landau theory reveals the second-order phase transition and indicates that the magnetocaloric properties of CaBaCo$_{4}$O$_{7}$ are dominated by the magnetoelastic coupling and electron interaction. The corresponding values of refrigerant capacity and relative cooling power are estimated to be 33 J/kg and 42 J/kg, respectively.
|
Received: 25 July 2022
Revised: 29 August 2022
Accepted manuscript online: 05 September 2022
|
PACS:
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51725104) and Beijing Natural Science Foundation (Grant No. Z180009). |
Corresponding Authors:
Young Sun
E-mail: youngsun@cqu.edu.cn
|
Cite this article:
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳) Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7 2023 Chin. Phys. B 32 017504
|
[1] Omote H, Watanabe S, Matsumoto K, Gilmutdinov I, Kiiamov A and Tayurskii D 2019 Cryogenics 101 58 [2] Zhang H, Gimaev R, Kovalev B, Kamilov K, Zverev V and Tishin A 2019 Physica B 558 65 [3] Pakhira S, Mazumdar C, Ranganathan R, et al. 2017 Sci. Rep. 7 7367 [4] Zhang Y 2019 J. Alloys Compd. 787 1173 [5] Taboada-Moreno C A, Sánchez-De Jesús F, Pedro-Garcí a F, Cortés-Escobedo C A, Betancourt-Cantera J A, Ramírez-Cardona M and BolarínMiró A M 2020 J. Magn. Magn. Mater. 496 165887 [6] Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Prog. Mater. Sci. 93 112 [7] Li L, Yan M 2020 J. Alloys Compd. 823 153810 [8] Gottschall T, Skokov K P, Fries M, Taubel A, Radulov I, Scheibel F, Benke D, Riegg S and Gutfleisch O 2019 Adv. Energy Mater. 9 1901322 [9] Bordács S, Kocsis V, Tokunaga Y, Nagel U, Rõ om T, Takahashi Y, Taguchi Y and Tokura Y 2015 Phys. Rev. B 92 214441 [10] Dey K, Indra A, Chatterjee A, Majumdar S, Rütt U, Gutowski O, Zimmermann M V and Giri S 2017 Phys. Rev. B 96 184428 [11] Chai Y S, Cong J Z, He J C, Su D, Ding X X, Singleton J, Zapf V and Sun Y 2021 Phys. Rev. B 103 174433 [12] Qu Z, Ling L, Zhang L, Pi L and Zhang Y 2011 Solid State Commun. 151 917 [13] Seikh M M, Kundu A K, Caignaert V and Raveau B 2016 J. Alloys Compd. 656 166 [14] Hussain S and Maqsood A 2007 J. Magn. Magn. Mater. 316 73 [15] Paul-Boncour V and Bessais L 2021 Magnetochemistry 7 13 [16] Dhanasekhar C, Das A and Venimadhav A 2016 J. Magn. Magn. Mater. 418 76 [17] Caignaert V, Pralong V, Maignan A and Raveau B 2009 Solid State Commun. 149 453 [18] Ghorai S, Ivanov S A, Skini R and Svedlindh P 2021 J. Phys.: Condens. Matter 33 145801 [19] Anderson P W and Hasegawa H 1955 Phys. Rev. 100 675 [20] Fita I, Troyanchuk I O, Zajarniuk T, Iwanowski P, Wisniewski A and Puzniak R 2018 Phys. Rev. B 98 214445 [21] Caignaert V, Pralong V, Hardy V, Ritter C and Raveau B 2010 Phys. Rev. B 81 094417 [22] Banerjee B 1964 Phys. Lett. 12 16 [23] Kumar P, Singh N K, Suresh K G and Nigam A K 2008 Phys. Rev. B 77 184411 [24] Morozkin A V, Garshev A V, Yapaskurt V O, Yao J, Nirmala R, Quezado S and Malik S K 2018 J. Solid State Chem. 260 95 [25] Shen J, Li Y X and Sun J R 2009 J. Alloys Compd . 476 693 [26] Zhang Z, Stein S, Li L and Poettgen R 2019 Intermetallics 109 24 [27] Stein S, Heletta L, Block T and Pöttgen R 2018 Z. Naturforsch. B 73 987 [28] Aliuzzaman M, Haque M M, Ferdous M J, Hoque S M and Hakim M A 2014 World J. Condens. Matter Phys. 4 13 [29] Ajmal M, Shah N A, Maqsood A, Awan M S and Arif M 2010 J. Alloys Compd. 508 226 [30] Amaral J S, Reis M S, Amaral V S, Mendonca T M, Araujo J P, Sa M A, Tavares P B and Vieira J M 2005 J. Magn. Magn. Mater. 290 686 [31] Nasri M, Cherif A and Dhahri E 2019 J. Low Temp. Phys. 196 386 [32] Inoue J and Shimizu M 1982 J. Phys. F: Met. Phys. 12 1811 [33] Johnson R D, Cao K, Giustino F and Radaelli P G 2014 Phys. Rev. B 90 045129 [34] Singh K, Caignaert V, Chapon L C, Pralong V, Raveau B and Maignan A 2012 Phys. Rev. B 86 024410 [35] Law J Y, Franco V, Moreno-Ramírez L M, Conde A, Karpenkov D Y, Radulov I, Skokov K P and Gutfleisch O 2018 Nat. Commun. 9 1 [36] Bonilla C M, Bartolomé F, García L M, Parra-Borderías M, HerreroAlbillos J and Franco V 2010 J. Appl. Phys. 107 09E131 [37] Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512 [38] Yang Y, Zhang Y, Xu X, Geng S, Hou L, Li X, Ren Z and Wilde G 2017 J. Alloys Compd. 692 665 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|