CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons |
Yong Li(李勇)1,†, Liang Qin(覃亮)1, Hongguo Zhang(张红国)2, and Lingwei Li(李领伟)1 |
1 Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials&Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract The crystal structure, martensitic transformation and magnetocaloric effect have been studied in all-$d$-metal Ni$_{35}$Co$_{15}$Mn$_{33}$Fe$_{2}$Ti$_{15}$ alloy ribbons with different wheel speeds (15 m/s (S15), 30 m/s (S30), and 45 m/s (S45)). All three ribbons crystalize in B2-ordered structure at room temperature with crystal constants of 5.893(2) Å, 5.898(4) Å, and 5.898(6) Å, respectively. With the increase of wheel speed, the martensitic transformation temperature decreases from 230 K to 210 K, the Curie temperature increases slightly from 371 K to 378 K. At the same time, magnetic entropy change ($\Delta S_{\rm m}$) is also enhanced, as well as refrigeration capacity ($RC$). The maximum $\Delta S_{\rm m}$ of 15.6(39.7) J/kg$\cdot$K and $RC$ of 85.5 (212.7) J/kg under $\Delta H = 20$ (50) kOe (1 ${\rm Oe}=79.5775$ A$\cdot$m$^{-1}$) appear in S45. The results indicate that the ribbons could be the candidate for solid-state magnetic refrigeration materials.
|
Received: 04 March 2022
Revised: 07 May 2022
Accepted manuscript online: 12 May 2022
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
75.20.En
|
(Metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52001102 and 51771003). |
Corresponding Authors:
Yong Li
E-mail: yongli@hdu.edu.cn
|
Cite this article:
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟) Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons 2022 Chin. Phys. B 31 087103
|
[1] Hu L, Zhu L, He H, Zhang L and Ye Z 2015 J. Mater. Chem. C 3 1330 [2] Hu L, Cao L, Li L, Duan J, Liao X, Long F, Zhou J, Xiao Y, Zeng Y J and Zhou S 2021 Mater. Horiz. 8 1286 [3] Tegus O, Brück E, Buschow K H J and Boer F R D 2002 Nature 415 150 [4] Hou Z, Zhang Q, Zhang X, Xu G, Xia J, Ding B, Li H, Zhang S, Batra N M, Costa P, Liu E, Wu G, Ezawa M, Liu X, Zhou Y, Zhang X and Wang W 2020 Adv. Mater. 32 1904815 [5] Li Y, Qin L, Huang S and Li L 2022 Sci. China Mater. 65 486 [6] Li L and Yan M 2020 J. Alloys Compd. 823 153810 [7] Manosa L and Planes A 2017 Adv. Mater. 29 1603607 [8] Li L, Xu P, Ye S, Li Y, Liu G, Huo D and Yan M 2020 Acta Mater. 194 354 [9] Zhang Y, Wu B, Guo D, Wang J and Ren Z 2021 Chin. Phys. B 30 017501 [10] Wu B, Zhang Y, Guo D, Wang J and Ren Z 2021 Ceram. Int. 47 6290 [11] Zhang Y, Zhu J, Li S, Wang J and Ren Z 2022 J. Mater. Sci. Technol. 102 66 [12] Ma Z, Dong X, Zhang Z and Li L 2021 J. Mater. Sci. Technol. 92 138 [13] Wang Y, Guo D, Wu B, Geng S and Zhang Y 2020 J. Magn. Magn. Mater. 498 166179 [14] Zhang Y 2019 J. Alloys Compd. 787 1173 [15] Zhang Y, Zhu J, Li S, Zhang Z, Wang J and Ren Z 2022 Sci. China Mater. 65 1345 [16] Xu P, Ma Z, Wang P, Wang H and Li L 2021 Materials Today Physics 20 100470 [17] Zhang Y, Tian Y, Zhang Z, Jia Y, Zhang B, Jiang M, Wang J and Ren Z 2022 Acta Mater. 226 117669 [18] Hu L, Zhou J, Hou Z, Su W, Yang B, Li L and Yan M 2021 Mater. Horiz. 8 3306 [19] Zou J, Shen B, Gao B, Shen J and Sun J 2009 Adv. Mater. 21 693 [20] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and Boer F D 2012 Nat. Commun. 3 873 [21] Li Y, Zeng Q, Wei Z, Liu E, Han X, Du Z, Li L, Xi X, Wang W, Wang S and Wu G 2019 Acta Mater. 174 289 [22] Gottschall T, Benke D, Fries M, Taubel A, Radulov I A, Skokov K P and Gutfleisch O 2017 Adv. Funct. Mater. 27 1606735 [23] Wang L, Li Z, Yang J, Yang B, Zhao X and Zuo L 2020 Intermetallics 125 106888 [24] Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H G, Wang W H and Wu G H 2015 Appl. Phys. Lett. 107 022406 [25] Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H and Wu G H 2016 Appl. Phys. Lett. 109 071904 [26] Neves Bez H, Pathak A K, Biswas A, Zarkevich N, Balema V, Mudryk Y, Johnson D D and Pecharsky V K 2019 Acta Mater. 173 225 [27] Wei Z Y, Sun W, Shen Q, Shen Y, Zhang Y F, Liu E K and Liu J 2019 Appl. Phys. Lett. 114 101903 [28] Yong Li, Peng Xu, Xiaoming Zhang, Guodong Liu, Enke Liu and Li L 2020 Chin. Phys. B 29 087101 [29] Taubel A, Beckmann B, Pfeuffer L, Fortunato N, Scheibel F, Ener S, Gottschall T, Skokov K P, Zhang H and Gutfleisch O 2021 Acta Mater. 201 425 [30] Song Y, Chen X, Dabade V, Shield T W and James R D 2013 Nature 502 85 [31] Li Y, Huang S, Wang W, Liu E and Li L 2020 J. Appl. Phys. 127 233907 [32] Feng Y, Chen H, Gao L, Wang H, Bian X and Gong M 2016 Mater. Charact. 122 170 [33] Li Y, Qin L, Huang S, Zhang X and Li L 2021 J. Magn. Magn. Mater. 529 167891 [34] Shen Y, Wei Z, Sun W, Zhang Y, Liu E and Liu J 2020 Acta Mater. 188 677 [35] Shamberger P J and Ohuchi F S 2009 Phys. Rev. B 79 144407 [36] Chen L, Hu F X, Wang J, Bao L F, Zheng X Q, Pan L Q, Yin J H, Sun J R and Shen B G 2013 J. Alloys Compd. 549 170 [37] Bruno N M, Huang Y J, Dennis C L, Li J G, Shull R D, Ross J H Jr, Chumlyakov Y I and Karaman I 2016 J. Appl. Phys. 120 075101 [38] Zheng H, Wu D, Xue S, Frenzel J, Eggeler G and Zhai Q 2011 Acta Mater. 59 5692 [39] Quintana-Nedelcos A, Llamazares J L S, Ríos-Jara D, Lara-Rodríguez A G and García-Fernández T 2013 Phys. Stat. Sol. (a) 210 2159 [40] Roca P M L, Isola L M, Sobrero C E, Vermaut Ph and Malarría J 2015 Mater. Today:Proc. 2 S743 [41] Roca P L, Isola L, Vermaut Ph and Malarría J 2017 Scripta Mater. 135 5 [42] Liu K, Han X, Yu K, Ma C, Zhang Z, Song Y, Ma S, Zeng H, Chen C, Luo X, Rehman S U and Zhong Z 2019 Intermetallics 110 106472 [43] Ma C, Liu K, Han X, Yang S, Ye N and Tang J 2020 J. Magn. Magn. Mater. 493 165733 [44] Liu K, Ma S C, Ma C C, Yang S, Ge Q, Han X Q, Yu K, Song Y, Zhang Z S, Chen C C, Liu E K and Zhong Z C 2018 J. Alloys Compd. 746 503 [45] Li Z, Li Z, Li D, Yang J, Yang B, Hu Y, Wang D, Zhang Y, Esling C, Zhao X and Zuo L 2020 Acta Mater. 192 52 [46] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957 [47] Liu K, Ma S, Zhang Y, Zeng H, Yu G, Luo X, Chen C, Rehman S U, Hu Y and Zhong Z 2020 J. Mater. Sci. Technol. 58 145 [48] Zhang G, Li Z, Yang J, Yang B, Wang D, Zhang Y, Esling C, Hou L, Li X, Zhao X and Zuo L 2020 Appl. Phys. Lett. 116 023902 [49] Wójcik A, Maziarz W, Szczerba M, Kowalczyk M, Cesari E and Dutkiewicz J 2018 Intermetallics 100 88 [50] Zeng Q, Shen J, Zhang H, Chen J, Ding B, Xi X, Liu E, Wang W and Wu G 2019 J. Phys.:Condens. Matter 31 425401 [51] Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O and Brück E 2009 J. Magn. Magn. Mater. 321 3559 [52] Pecharsky V K and Jr. K A G 1997 Phys. Rev. Lett. 78 4494 [53] Hu F, Shen B, Sun J, Cheng Z, Rao G and Zhang X 2001 Appl. Phys. Lett. 78 3675 [54] Liu S, Xuan H, Cao T, Wang L, Xie Z, Liang X, Li H, Feng L, Chen F and Han P 2019 Phys. Stat. Sol. (a) 216 1900563 [55] Li Y, Wei Z Y, Zhang H G, Liu E K, Luo H Z, Liu G D, Xi X K, Wang S G, Wang W H, Yue M, Wu G H and Zhang X X 2016 APL Mater. 4 071101 [56] Kaya M, Yildirim S, Yüzüak E, Dincer I, Ellialtioglu R and Elerman Y 2014 J. Magn. Magn. Mater. 368 191 [57] Zhang Y, Zeng H, Yu G, Liu K, Ma S, Yang K, Zhao X, Yuan G, Luo X, Chen C and Zhong Z 2020 Intermetallics 125 106882 [58] Liu K, Ma S, Ma C, Han X, Yu K, Yang S, Zhang Z, Song Y, Luo X, Chen C, Rehman S U and Zhong Z 2019 J. Alloys Compd. 790 78 [59] Liu Y, Xiao A, Yang T, Xu Z, Zhou X and Ma T 2022 Scripta Mater. 207 114303 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|