Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087103    DOI: 10.1088/1674-1056/ac6edf

Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons

Yong Li(李勇)1,†, Liang Qin(覃亮)1, Hongguo Zhang(张红国)2, and Lingwei Li(李领伟)1
1 Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials&Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China
Abstract  The crystal structure, martensitic transformation and magnetocaloric effect have been studied in all-$d$-metal Ni$_{35}$Co$_{15}$Mn$_{33}$Fe$_{2}$Ti$_{15}$ alloy ribbons with different wheel speeds (15 m/s (S15), 30 m/s (S30), and 45 m/s (S45)). All three ribbons crystalize in B2-ordered structure at room temperature with crystal constants of 5.893(2) Å, 5.898(4) Å, and 5.898(6) Å, respectively. With the increase of wheel speed, the martensitic transformation temperature decreases from 230 K to 210 K, the Curie temperature increases slightly from 371 K to 378 K. At the same time, magnetic entropy change ($\Delta S_{\rm m}$) is also enhanced, as well as refrigeration capacity ($RC$). The maximum $\Delta S_{\rm m}$ of 15.6(39.7) J/kg$\cdot$K and $RC$ of 85.5 (212.7) J/kg under $\Delta H = 20$ (50) kOe (1 ${\rm Oe}=79.5775$ A$\cdot$m$^{-1}$) appear in S45. The results indicate that the ribbons could be the candidate for solid-state magnetic refrigeration materials.
Keywords:  martensitic transformation      magnetocaloric effect      wheel speeds      all-d-metal Heusler ribbons  
Received:  04 March 2022      Revised:  07 May 2022      Accepted manuscript online:  12 May 2022
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  31.15.A- (Ab initio calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.20.En (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52001102 and 51771003).
Corresponding Authors:  Yong Li     E-mail:

Cite this article: 

Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟) Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons 2022 Chin. Phys. B 31 087103

[1] Hu L, Zhu L, He H, Zhang L and Ye Z 2015 J. Mater. Chem. C 3 1330
[2] Hu L, Cao L, Li L, Duan J, Liao X, Long F, Zhou J, Xiao Y, Zeng Y J and Zhou S 2021 Mater. Horiz. 8 1286
[3] Tegus O, Brück E, Buschow K H J and Boer F R D 2002 Nature 415 150
[4] Hou Z, Zhang Q, Zhang X, Xu G, Xia J, Ding B, Li H, Zhang S, Batra N M, Costa P, Liu E, Wu G, Ezawa M, Liu X, Zhou Y, Zhang X and Wang W 2020 Adv. Mater. 32 1904815
[5] Li Y, Qin L, Huang S and Li L 2022 Sci. China Mater. 65 486
[6] Li L and Yan M 2020 J. Alloys Compd. 823 153810
[7] Manosa L and Planes A 2017 Adv. Mater. 29 1603607
[8] Li L, Xu P, Ye S, Li Y, Liu G, Huo D and Yan M 2020 Acta Mater. 194 354
[9] Zhang Y, Wu B, Guo D, Wang J and Ren Z 2021 Chin. Phys. B 30 017501
[10] Wu B, Zhang Y, Guo D, Wang J and Ren Z 2021 Ceram. Int. 47 6290
[11] Zhang Y, Zhu J, Li S, Wang J and Ren Z 2022 J. Mater. Sci. Technol. 102 66
[12] Ma Z, Dong X, Zhang Z and Li L 2021 J. Mater. Sci. Technol. 92 138
[13] Wang Y, Guo D, Wu B, Geng S and Zhang Y 2020 J. Magn. Magn. Mater. 498 166179
[14] Zhang Y 2019 J. Alloys Compd. 787 1173
[15] Zhang Y, Zhu J, Li S, Zhang Z, Wang J and Ren Z 2022 Sci. China Mater. 65 1345
[16] Xu P, Ma Z, Wang P, Wang H and Li L 2021 Materials Today Physics 20 100470
[17] Zhang Y, Tian Y, Zhang Z, Jia Y, Zhang B, Jiang M, Wang J and Ren Z 2022 Acta Mater. 226 117669
[18] Hu L, Zhou J, Hou Z, Su W, Yang B, Li L and Yan M 2021 Mater. Horiz. 8 3306
[19] Zou J, Shen B, Gao B, Shen J and Sun J 2009 Adv. Mater. 21 693
[20] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and Boer F D 2012 Nat. Commun. 3 873
[21] Li Y, Zeng Q, Wei Z, Liu E, Han X, Du Z, Li L, Xi X, Wang W, Wang S and Wu G 2019 Acta Mater. 174 289
[22] Gottschall T, Benke D, Fries M, Taubel A, Radulov I A, Skokov K P and Gutfleisch O 2017 Adv. Funct. Mater. 27 1606735
[23] Wang L, Li Z, Yang J, Yang B, Zhao X and Zuo L 2020 Intermetallics 125 106888
[24] Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H G, Wang W H and Wu G H 2015 Appl. Phys. Lett. 107 022406
[25] Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H and Wu G H 2016 Appl. Phys. Lett. 109 071904
[26] Neves Bez H, Pathak A K, Biswas A, Zarkevich N, Balema V, Mudryk Y, Johnson D D and Pecharsky V K 2019 Acta Mater. 173 225
[27] Wei Z Y, Sun W, Shen Q, Shen Y, Zhang Y F, Liu E K and Liu J 2019 Appl. Phys. Lett. 114 101903
[28] Yong Li, Peng Xu, Xiaoming Zhang, Guodong Liu, Enke Liu and Li L 2020 Chin. Phys. B 29 087101
[29] Taubel A, Beckmann B, Pfeuffer L, Fortunato N, Scheibel F, Ener S, Gottschall T, Skokov K P, Zhang H and Gutfleisch O 2021 Acta Mater. 201 425
[30] Song Y, Chen X, Dabade V, Shield T W and James R D 2013 Nature 502 85
[31] Li Y, Huang S, Wang W, Liu E and Li L 2020 J. Appl. Phys. 127 233907
[32] Feng Y, Chen H, Gao L, Wang H, Bian X and Gong M 2016 Mater. Charact. 122 170
[33] Li Y, Qin L, Huang S, Zhang X and Li L 2021 J. Magn. Magn. Mater. 529 167891
[34] Shen Y, Wei Z, Sun W, Zhang Y, Liu E and Liu J 2020 Acta Mater. 188 677
[35] Shamberger P J and Ohuchi F S 2009 Phys. Rev. B 79 144407
[36] Chen L, Hu F X, Wang J, Bao L F, Zheng X Q, Pan L Q, Yin J H, Sun J R and Shen B G 2013 J. Alloys Compd. 549 170
[37] Bruno N M, Huang Y J, Dennis C L, Li J G, Shull R D, Ross J H Jr, Chumlyakov Y I and Karaman I 2016 J. Appl. Phys. 120 075101
[38] Zheng H, Wu D, Xue S, Frenzel J, Eggeler G and Zhai Q 2011 Acta Mater. 59 5692
[39] Quintana-Nedelcos A, Llamazares J L S, Ríos-Jara D, Lara-Rodríguez A G and García-Fernández T 2013 Phys. Stat. Sol. (a) 210 2159
[40] Roca P M L, Isola L M, Sobrero C E, Vermaut Ph and Malarría J 2015 Mater. Today:Proc. 2 S743
[41] Roca P L, Isola L, Vermaut Ph and Malarría J 2017 Scripta Mater. 135 5
[42] Liu K, Han X, Yu K, Ma C, Zhang Z, Song Y, Ma S, Zeng H, Chen C, Luo X, Rehman S U and Zhong Z 2019 Intermetallics 110 106472
[43] Ma C, Liu K, Han X, Yang S, Ye N and Tang J 2020 J. Magn. Magn. Mater. 493 165733
[44] Liu K, Ma S C, Ma C C, Yang S, Ge Q, Han X Q, Yu K, Song Y, Zhang Z S, Chen C C, Liu E K and Zhong Z C 2018 J. Alloys Compd. 746 503
[45] Li Z, Li Z, Li D, Yang J, Yang B, Hu Y, Wang D, Zhang Y, Esling C, Zhao X and Zuo L 2020 Acta Mater. 192 52
[46] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
[47] Liu K, Ma S, Zhang Y, Zeng H, Yu G, Luo X, Chen C, Rehman S U, Hu Y and Zhong Z 2020 J. Mater. Sci. Technol. 58 145
[48] Zhang G, Li Z, Yang J, Yang B, Wang D, Zhang Y, Esling C, Hou L, Li X, Zhao X and Zuo L 2020 Appl. Phys. Lett. 116 023902
[49] Wójcik A, Maziarz W, Szczerba M, Kowalczyk M, Cesari E and Dutkiewicz J 2018 Intermetallics 100 88
[50] Zeng Q, Shen J, Zhang H, Chen J, Ding B, Xi X, Liu E, Wang W and Wu G 2019 J. Phys.:Condens. Matter 31 425401
[51] Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O and Brück E 2009 J. Magn. Magn. Mater. 321 3559
[52] Pecharsky V K and Jr. K A G 1997 Phys. Rev. Lett. 78 4494
[53] Hu F, Shen B, Sun J, Cheng Z, Rao G and Zhang X 2001 Appl. Phys. Lett. 78 3675
[54] Liu S, Xuan H, Cao T, Wang L, Xie Z, Liang X, Li H, Feng L, Chen F and Han P 2019 Phys. Stat. Sol. (a) 216 1900563
[55] Li Y, Wei Z Y, Zhang H G, Liu E K, Luo H Z, Liu G D, Xi X K, Wang S G, Wang W H, Yue M, Wu G H and Zhang X X 2016 APL Mater. 4 071101
[56] Kaya M, Yildirim S, Yüzüak E, Dincer I, Ellialtioglu R and Elerman Y 2014 J. Magn. Magn. Mater. 368 191
[57] Zhang Y, Zeng H, Yu G, Liu K, Ma S, Yang K, Zhao X, Yuan G, Luo X, Chen C and Zhong Z 2020 Intermetallics 125 106882
[58] Liu K, Ma S, Ma C, Han X, Yu K, Yang S, Zhang Z, Song Y, Luo X, Chen C, Rehman S U and Zhong Z 2019 J. Alloys Compd. 790 78
[59] Liu Y, Xiao A, Yang T, Xu Z, Zhou X and Ma T 2022 Scripta Mater. 207 114303
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[5] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[6] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[11] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[12] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[13] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[14] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[15] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
No Suggested Reading articles found!