Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117503    DOI: 10.1088/1674-1056/ac8733
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons

Hao Sun(孙浩)1,2, Junfeng Wang(王俊峰)2, Lu Tian(田路)2, Jianjian Gong(巩建建)1,2, Zhaojun Mo(莫兆军)2,†, Jun Shen(沈俊)3, and Baogen Shen(沈保根)1,‡
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China;
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China;
3 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The magnetic and magnetocaloric effects (MCE) of the amorphous $RE_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ ($RE={\rm Er}$ and Tm) ribbons were systematically investigated in this paper. Compounds with $R ={\rm Er}$ and Tm undergo a second-order magnetic phase transition from ferromagnetic (FM) to paramagnetic (PM) around Curie temperature $T_{\rm C} \sim 9.3$ K and 3 K, respectively. For Er$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ compound, an obvious magnetic hysteresis and thermal hysteresis were observed at low field below 6 K, possibly due to spin-glass behavior. Under the field change of 0 T-5 T, the maximum values of magnetic entropy change ($-\Delta S_{\rm M}^{\rm max}$) reach as high as 15.6 J/kg$\cdot$K and 15.7 J/kg$\cdot$K for Er$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ and Tm$_{55}$Co$_{30}$Al$_{10}$Si$_{5}$ compounds, corresponding refrigerant capacity (RC) values are estimated as 303 J/kg and 189 J/kg, respectively. The large MCE makes amorphous $RE_{55}$Co$_{30}$Al$_{10}$Si$_{5 }$ ($RE={\rm Er}$ and Tm) alloys become very attractive magnetic refrigeration materials in the low-temperature region.
Keywords:  magnetocaloric effect      amorphous      magnetic refrigeration      magnetic property  
Received:  26 May 2022      Revised:  06 July 2022      Accepted manuscript online:  05 August 2022
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.47.Np (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52171195 and 52171054), the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 51925605), and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20200042).
Corresponding Authors:  Zhaojun Mo, Baogen Shen     E-mail:  mozhaojun@gia.cas.cn;shenbg@iphy.ac.cn

Cite this article: 

Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根) Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons 2022 Chin. Phys. B 31 117503

[1] Geng H, Cui X Y, Weng J H, She H L and Wang W Q 2019 Appl. Therm. Eng. 157 113640
[2] Ghorbani B, Mehrpooya M, Shirmohammadi R and Hamedi M H 2018 J. Clean. Prod. 179 495
[3] Yildiz Y and Nalbant M 2008 Int. J. Mach. Tool. Manu. 48 947
[4] Li L W and Yan M 2020 J. Alloys Compd. 823 153810
[5] Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[6] Zhang H and Shen B G 2015 Chin. Phys. B 24 127504
[7] Gupta S and Suresh K G 2015 J. Alloys Compd. 618 562
[8] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[9] Wu C, Ding D and Xia L 2016 Chin. Phys. Lett. 33 016102
[10] Ma Y F, Tang B Z, Xia L and Ding D 2016 Chin. Phys. Lett. 33 126101
[11] Ding D, Zhang Y Q and Xia L 2015 Chin. Phys. Lett. 32 106101
[12] Ding D, Wang P, Guan Q, Tang M B and Xia L 2013 Chin. Phys. Lett. 30 096104
[13] Luo L, Shen H X, Bao Y, Yin H, Jiang S D, Huang Y J, Guo S, Gao S Y, Xing D W, Li Z and Sun J F 2020 J. Magn. Magn. Mater. 507 166856
[14] Hou L, Xiang X Y, Huang Y, Zhang B, Jiang C, Chen S S and Li W H 2021 Appl. Phys. A 127 501
[15] Dong Z Q and Yin S H 2020 J. Magn. Magn. Mater. 495 165888
[16] Li J, Xue L, Yang W M, Yuan C C, Huo J T and Shen B L 2018 Intermetallics 96 90
[17] Wang Z W, Yu P, Cui Y T and Xia L 2016 J. Alloys Compd. 658 598
[18] Boutahar A, Lassri H, Zehani K, Bessais L and Hlil E K 2014 Magn. Magn. Mater. 369 92
[19] Kou X H, Luo Q, Dinh P N and Shen J 2016 J. Alloys Compd. 699 591
[20] Fu H and Zou M 2011 J. Alloys Compd. 509 4613
[21] Yin H, Huang Y J, Bao Y, Jiang S, Xue P, Jiang S S, Wang H, Qin F X, Li Z, Sun S C, Wang Y F, Shen H X and Sun J F 2020 J. Alloys Compd. 815 150983
[22] Yu P, Zhang N Z, Cui Y T, Wen L, Zeng Z Y and Xia L 2016 J. Alloys Compd. 655 353
[23] Gao W L, Wang X J, Wang L J, Zhang Y K and Cui J Z 2018 J. Non-Cryst. Solids 484 36
[24] Tang B Z, Huang L W, Song M N, Ding D, Wang X and Xia L 2019 J. Non-Cryst. Solids 522 119589
[25] Li Z, Ding D and Xia L 2017 Intermetallics 86 11
[26] Wang Y M, Guo D, Wu B B, Geng S H and Zhang Y K 2020 J. Magn. Magn. Mater. 498 166179
[27] Zheng Z G, Zhong X C, Su K P, Yu H Y, Liu Z W, Zeng D C 2011 Sci. China- Ser. G 54 1267
[28] Wang Y F, Duc N T M, Feng T F, Wei H J, Qin F X and Phan M H 2022 J. Alloys Compd. 907 164328
[29] Lindner N, Sniadecki Z, Kolodziej M, Greneche J M, Marcin J, Skorvanek I and Idzikowski B 2022 J. Mater. Sci. 57 553
[30] Zhang Y K, Zhun J, Li S, Zhang B, Wang Y M, Wang J and Ren Z M 2022 J. Alloys Compd. 895 162633
[31] Jia Y S, Zhao X Y, Liu X L and Li L W 2020 J. Alloys Compd. 813 152177
[32] Franco V and Conde A 2010 Int. J. Refrig. 33 465
[33] Griffith L D, Mudryk Y, Salaughter J and Pecharsky V K 2018 J. Appl. Phys. 123 034902
[34] Zhang Y K, Gao D, Wu B B, Wang H F, Guan R G, Li X and Ren Z M 2020 J. Appl. Phys. 127 033905
[35] Guo D, Zhang Y K, Geng S H, Xu H, Ren Z M and Wilde G 2018 J. Mater Sci. 53 9816
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[8] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[9] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[10] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[11] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[12] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[13] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[14] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[15] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
No Suggested Reading articles found!