|
|
Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors |
Bosen Wang(王铂森)1,2,4, Yaoqing Zhang(张尧卿)3, Shuxiang Xu(徐淑香)1, Kento Ishigaki2, Kazuyuki Matsubayashi2, Jin-Guang Cheng(程金光)1,4, Hideo Hosono3, Yoshiya Uwatoko2 |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan;
3 Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We report robust superconducting state and gap symmetry of Nb5Ir3O via electrical transport and specific heat measurements. The analysis of specific heat manifests that Nb5Ir3O is a strongly coupled superconductor with ΔC/γnTc~1.91 and double s-wave superconducting gaps of 2△L(0)/kBTc~6.56 and 2△S(0)/kBTc~2.36 accounting for 90% and 10%, respectively. The (Cp-γnT)/T3 vs. T plot shows a broad peak at~23 K, indicating phonon softening and the appearance of low-lying phonon mode associated with the interstitial oxygen. This behavior explains the monotonic increase of Tc in Nb5Ir3O(1-δ) by strengthening the electron-phonon coupling and enlarging the density of states at Fermi level. The Hall coefficient is temperature independent below 200 K, and changes its sign from positive to negative above 250 K, suggesting that carrier is across the hole- to electron-dominant regions and the multi-band electronic structures. On warming, the resistivity shows a gradual crossover from T2- to T3-dependence at a critical temperature T*, and a broad peak at a temperature Tp. The reduced Tc under pressure is linearly correlated with lattice parameters c/a ratio and Tp, suggesting the important phonon contributions in Nb5Ir3O as a phonon-medicated superconductor. Possible physical mechanisms are proposed.
|
Received: 16 June 2019
Revised: 15 August 2019
Accepted manuscript online:
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
Corresponding Authors:
Bosen Wang
E-mail: bswang@iphy.ac.cn
|
Cite this article:
Bosen Wang(王铂森), Yaoqing Zhang(张尧卿), Shuxiang Xu(徐淑香), Kento Ishigaki, Kazuyuki Matsubayashi, Jin-Guang Cheng(程金光), Hideo Hosono, Yoshiya Uwatoko Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors 2019 Chin. Phys. B 28 107401
|
[31] |
Subedi A, Zhang L J, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
|
[1] |
Keppens V, Mandrus D, Sales B C, Chakoumakos B C, Dai P, Coldea R, Maple M B, Gajewski D A, Freeman E J and Bennington S 1998 Nature 395 876
|
[32] |
Forthaus M K, Sengupta K, Heyer O, Christensen N E, Svane A, Syassen K, Khomskii D I, Lorenz T and Abd-Elmeguid M M 2010 Phys. Rev. Lett. 105 157001
|
[2] |
Gunnarson O 1997 Rev. Mod. Phys. 69 575
|
[3] |
Bauer E, Grysiv A, Chen X Q, et al. 2007 Phys. Rev. Lett. 99 217001
|
[4] |
Hirai D, Ali M N and Cava R J 2013 J. Phys. Soc. Jpn. 82 124701
|
[5] |
Hiroi Z, Yamaura J I and Hattori K 2012 J. Phys. Soc. Jpn. 81 011012
|
[6] |
Testardi L R 1975 Rev. Mod. Phys. 47 637
|
[7] |
Kudo K, Takasuga M, Okamoto Y, Hiroi Z and Nohara M 2012 Phys. Rev. Lett. 109 097002
|
[8] |
Grosche F M, Yuan H Q, Cabrera W C, Paschen S, Langhammer C, Kromer F, Sparn G, Baenitz M, Grin Y and Steglich F 2001 Phys. Rev. Lett. 87 247003
|
[9] |
Leithe J A, Schnelle W, Rosner H, Senthilkumaran N, Rabis A, Baenitz M, Gippius A, Morozova E, Mydosh J A and Grin Y 2003 Phys. Rev. Lett. 91 037208
|
[10] |
Qi Y P, Lei H C, Guo J G, Shi W J, Yan B H, Felser C and Hosono H 2017 J. Am. Chem. Soc. 139 8106
|
[11] |
Sales B C, Mandrus D and Williams R K 1996 Science 272 1325
|
[12] |
Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, lkegami H, Kono K and Hosono H 2007 J. Am. Chem. Soc. 129 7270
|
[13] |
Hosono H 2015 Phil. Trans. R. Soc. A 373 20140450
|
[14] |
Crystal Structure Database at http://icsd.fiz-karlsruhe.de/accessed [201310-10]
|
[15] |
Lv B, Zhu X Y, Lorenz B, Wei F Y, Xue Y Y, Yin Z P, Kotliar G and Chu C W 2013 Phys. Rev. B 88 134520
|
[16] |
Zhang Y Q, Wang B S, Xiao Z W, Lu Y F, Kamiya T, Uwatoko Y, Kageyana H and Hosono H 2017 NPG Quan. Mater. 2 45
|
[17] |
Xie W W, Luo H X, Phelan B F and Cava R J 2015 J. Mater. Chem. C 3 8235
|
[18] |
Li S, Liu X Y, An, V and Lv B 2018 New J. Phys. 20 13009
|
[19] |
Bortolozo A D, Dos Santos C A M, Jardim R F, Ritter C, Devishvili A, Rotter M, Gandra F G and Machado A J S 2012 J. App. Phys. 111 123912
|
[20] |
Koch C C and Scarbrough J O 1971 Phys. Rev. B 3 742
|
[21] |
Horyń R, Folcik K L and Iliev N 1978 J. Less Common Met. 57 69
|
[22] |
Mori N 2004 High Press. Res. 24 225
|
[23] |
Golovashkin A I, Gudenko A V, Tskhovrebov A M, Zherikhina L N and Norton M L 1994 Phys. C. 235-240 1481
|
[24] |
Gofryk K, Kaczorowski D, Plackowski T, Leithe J A and Grin Y 2005 Phys. Rev. B 72 094409
|
[25] |
Kitawaki R and Terasaki I 2002 J. Phys.: Condens. Matter 14 12495
|
[26] |
McMillan W L 1968 Phys. Rev. B 167 331
|
[27] |
Bouquet F, Wang Y, Sheikin I, Plackowski T, Junod A, Lee S and Tajima S 2002 Phys. Rev. Lett. 89 257001
|
[28] |
Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
|
[29] |
Johari G P Chem. Phys. 287 273 Chumakov A I et al 2011 Phys. Rev. Lett. 106 225501
|
[30] |
Cooper R A, Wang Y, Vignolle B, Lipscomne O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C and Hussey N E 2009 Science 323 603
|
[31] |
Subedi A, Zhang L J, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
|
[32] |
Forthaus M K, Sengupta K, Heyer O, Christensen N E, Svane A, Syassen K, Khomskii D I, Lorenz T and Abd-Elmeguid M M 2010 Phys. Rev. Lett. 105 157001
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|