Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078104    DOI: 10.1088/1674-1056/28/7/078104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers

Hui-Ming Hao(郝慧明)1,2, Xiang-Bin Su(苏向斌)1,2, Jing Zhang(张静)1, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Systematic investigation of InAs quantum dot (QD) growth using molecular beam epitaxy has been carried out, focusing mainly on the InAs growth rate and its effects on the quality of the InAs/GaAs quantum dots. By optimizing the growth rate, high quality InAs/GaAs quantum dots have been achieved. The areal quantum dot density is 5.9×1010 cm-2, almost double the conventional density (3.0×1010 cm-2). Meanwhile, the linewidth is reduced to 29 meV at room temperature without changing the areal dot density. These improved QDs are of great significance for fabricating high performance quantum dot lasers on various substrates.

Keywords:  quantum dots      growth rate      dot density      linewidth  
Received:  01 April 2019      Revised:  25 April 2019      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.Ta (Quantum dots)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  81.70.-q (Methods of materials testing and analysis)  
Fund: 

Project supported by the National Key Technology Research and Development Program of China (Grant No. 2018YFA0306101), the National Natural Science Foundation of China (Grant No. 61505196), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20170032), and the Guangdong Science and Technology Project, China (Grant No. 20180329).

Corresponding Authors:  Hai-Qiao Ni, Zhi-Chuan Niu     E-mail:  zcniu@semi.ac.cn;nihq@semi.ac.cn

Cite this article: 

Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers 2019 Chin. Phys. B 28 078104

[1] Wilk A, Kovsh A R, Mikhrin S S, Chaixa C, Novikovc I I, Maximovc M V, Shernyakovc Yu M, Ustinovc V M and Ledentsov N N 2005 J. Cryst. Growth 278 335
[2] Tanaka Y, Ishida M, Maeda Y, Akiyama T, Yamamoto T, Song H Z, Yamaguchi M, Nakata Y, Nishi K, Sugawara M and Arakawa Y 2009 Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, March 22-26, 2009 San Diego, United States, p. OWJ1
[3] Wang Z, Preble S, Lee C S and Guo W 2015 Proceedings of Advanced Photonics: Integrated Photonics Research, Silicon and Nanophotonics, June 27-July 1, 2015 Boston, United States, p. IM4B.4
[4] Tsang W T 1982 Appl. Phys. Lett. 40 217
[5] Hersee S D, Baldy M, Assenat P, Cremoux B D and Duchemin J P 1982 Electron. Lett. 18 870
[6] Liu H Y, Liew S L, Badcock T, Mowbray D J, Skolnick M S, Ray S K, Choi T L, Groom K M, Stevens B, Hasbullah F, Jin C Y, Hopkinson M and Hogg R A 2006 Appl. Phys. Lett. 89 073113
[7] Fathpour S, Mi Z, Bhattacharya P, Kovsh A R, Mikhrin S S, Krestnikov I L, Kozhukhov A V and Ledentsov N N 2004 Appl. Phys. Lett. 85 5164
[8] Saito H, Nishi K, Kamei A and Sugou S 2000 IEEE Photonic. Tech. L 12 1298
[9] Kovsh A R, Maleev N A, Zhukov A E, Mikhrin S S, Vasil'ev A P, Shemyakov Yu M, Maxim M V, Livshits D A, Ustinov V M, Alferov Zh I, Ledentsov N N and Bimberg D 2002 Electron. Lett. 38 1104
[10] Salhi A, Raino G, Fortunato L, Tasco V, Visimberga G, Martiradonna L, Todaro M T, Giorgi M D, Cingolani R, Trampert A, Vittorio M D and Passaseo 2008 IEEE J. Sel. Top. Quant. 14 1188
[11] Tanaka Y, Ishida M, Takada K, Yamamoto T, Song H Z, Nakata Y, Yamaguchi M, Nishi K, Sugawara M and Arakawa Y 2010 Proceedings of Conference on Lasers and Electro-Optics, May 16-21, 2010 San Jose, United States, p. CTuZ1
[12] Xu P F, Yang T, Ji H M, Cao Y L, Gu Y X, Liu Y, Ma W Q and Wang Z G 2010 J. Appl. Phys. 107 013102
[13] Su X B, Ding Y, Ma B, Zhang K L, Sh Z, Li J L, Cui X R, Xu Y Q, Ni H Q and Niu Z C 2018 Nanoscale Res. Lett. 13 59
[14] Joyce P B, Krzyzewski T J, Bell G R, Jones T S, Malik S, Childs D and Murray R 2000 Phys. Rev. B 62 10891
[15] Walther T, Cullis A G, Norris D J and Hopkinson M 2001 Phys. Rev. Lett. 86 2381
[16] Nakata Y, Mukai K, Sugawara M, Ohtsubo K, Ishikawa H and Yokoyama N 2000 J. Cryst. Growth 208 93
[17] Ra'ed M H and Eyman T S 2016 IOSR-JAP 8 01
[18] Guimard D, Ishida M, Li L, Nishioka M, Tanaka Y, Sudo H, Yamamoto T, Kondo H, Sugawara M and Arakawa Y 2009 Appl. Phys. Lett. 94 103116
[19] Rajesh M, Bordel D, Kawaguchi K, Faure S, Nishioka M, Augendre E, Clavelier L, Guimard D and Arakawa Y 2011 J. Cryst. Growth 315 114
[20] Li T H, Wang Q, Guo X, Jia Z G, Wang P Y, Ren X M, Huang Y Q and Cai S W 2012 Phys. E 44 1146
[21] Liu H, Wang Q, Chen J, Liu K and Ren X M 2016 J. Cryst. Growth 455 168
[22] Niu Z C, Ni H Q, Fang Z D, Gong Z, Zhang S Y, Wu D H, Sun Z, Zhao H, Peng H L, Han Q and Wu R H 2006 Chin. J. Semicond. 27 482 0253-4177(2006)03-0482-07
[23] Yue L, Gong Q, Cao C F, Yan J Y, Wang Y, Cheng R H and Li S G 2013 Chin. Opt. Lett. 11 061401
[24] Akahane K, Yamamoto N and Tsuchiya M 2008 Appl. Phys. Lett. 93 041121
[25] Akahane K, Matsumoto A, Umezawa T, Yamamoto N and Kawanishi T 2016 2016 Proceedings of International Semiconductor Laser Conference, September 12-15, 2016 Kobe, Japan, p. WE46
[26] Yamaguchi K, Yujobo K and Kaizu T 2000 Jpn. J. Appl. Phys. 39 L1245
[27] Nishi K, Saito H, Sugou S and Lee J S 1999 Appl. Phys. Lett. 74 1111
[28] Konishi T, Clarke E, Burrows C W, Bomphrey J J, Murray R and Bell G R 2017 Sci. Rep. 7 42606
[29] Liu W S 2013 J. Alloys Compd. 571 153
[30] Akahane K, Yamamoto N and Kawanishi T 2010 IEEE Photonic. Tech. L. 22 103
[31] Wang Z M, Feng S L, Lv Z D, Yang X P, Chen Z G, Song C Y, Xu Z Y, Zheng H Z, Wang F L, Han P D and Duan X F 1998 Acta Phys. Sin. 47 89 (in Chinese)
[32] Li L, Guimard D, Rajesh M and Arakawa Y 2008 Appl. Phys. Lett. 92 263105
[33] Kwoen J, Jang B, Lee J, Kageyama T, Watanabe K and Arakawaet Y 2018 Opt. Express 26 11568
[34] Ji H M, Yang T, Cao Y L, Xu P F, Gu Y X, Ma W Q and Wang Z G 2010 Chin. Phys. Lett. 27 027801
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[11] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[12] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[13] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[14] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[15] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
No Suggested Reading articles found!