INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers |
Hui-Ming Hao(郝慧明)1,2, Xiang-Bin Su(苏向斌)1,2, Jing Zhang(张静)1, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2 |
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Systematic investigation of InAs quantum dot (QD) growth using molecular beam epitaxy has been carried out, focusing mainly on the InAs growth rate and its effects on the quality of the InAs/GaAs quantum dots. By optimizing the growth rate, high quality InAs/GaAs quantum dots have been achieved. The areal quantum dot density is 5.9×1010 cm-2, almost double the conventional density (3.0×1010 cm-2). Meanwhile, the linewidth is reduced to 29 meV at room temperature without changing the areal dot density. These improved QDs are of great significance for fabricating high performance quantum dot lasers on various substrates.
|
Received: 01 April 2019
Revised: 25 April 2019
Accepted manuscript online:
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.07.Ta
|
(Quantum dots)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
81.70.-q
|
(Methods of materials testing and analysis)
|
|
Fund: Project supported by the National Key Technology Research and Development Program of China (Grant No. 2018YFA0306101), the National Natural Science Foundation of China (Grant No. 61505196), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20170032), and the Guangdong Science and Technology Project, China (Grant No. 20180329). |
Corresponding Authors:
Hai-Qiao Ni, Zhi-Chuan Niu
E-mail: zcniu@semi.ac.cn;nihq@semi.ac.cn
|
Cite this article:
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers 2019 Chin. Phys. B 28 078104
|
[1] |
Wilk A, Kovsh A R, Mikhrin S S, Chaixa C, Novikovc I I, Maximovc M V, Shernyakovc Yu M, Ustinovc V M and Ledentsov N N 2005 J. Cryst. Growth 278 335
|
[2] |
Tanaka Y, Ishida M, Maeda Y, Akiyama T, Yamamoto T, Song H Z, Yamaguchi M, Nakata Y, Nishi K, Sugawara M and Arakawa Y 2009 Proceedings of Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, March 22-26, 2009 San Diego, United States, p. OWJ1
|
[3] |
Wang Z, Preble S, Lee C S and Guo W 2015 Proceedings of Advanced Photonics: Integrated Photonics Research, Silicon and Nanophotonics, June 27-July 1, 2015 Boston, United States, p. IM4B.4
|
[4] |
Tsang W T 1982 Appl. Phys. Lett. 40 217
|
[5] |
Hersee S D, Baldy M, Assenat P, Cremoux B D and Duchemin J P 1982 Electron. Lett. 18 870
|
[6] |
Liu H Y, Liew S L, Badcock T, Mowbray D J, Skolnick M S, Ray S K, Choi T L, Groom K M, Stevens B, Hasbullah F, Jin C Y, Hopkinson M and Hogg R A 2006 Appl. Phys. Lett. 89 073113
|
[7] |
Fathpour S, Mi Z, Bhattacharya P, Kovsh A R, Mikhrin S S, Krestnikov I L, Kozhukhov A V and Ledentsov N N 2004 Appl. Phys. Lett. 85 5164
|
[8] |
Saito H, Nishi K, Kamei A and Sugou S 2000 IEEE Photonic. Tech. L 12 1298
|
[9] |
Kovsh A R, Maleev N A, Zhukov A E, Mikhrin S S, Vasil'ev A P, Shemyakov Yu M, Maxim M V, Livshits D A, Ustinov V M, Alferov Zh I, Ledentsov N N and Bimberg D 2002 Electron. Lett. 38 1104
|
[10] |
Salhi A, Raino G, Fortunato L, Tasco V, Visimberga G, Martiradonna L, Todaro M T, Giorgi M D, Cingolani R, Trampert A, Vittorio M D and Passaseo 2008 IEEE J. Sel. Top. Quant. 14 1188
|
[11] |
Tanaka Y, Ishida M, Takada K, Yamamoto T, Song H Z, Nakata Y, Yamaguchi M, Nishi K, Sugawara M and Arakawa Y 2010 Proceedings of Conference on Lasers and Electro-Optics, May 16-21, 2010 San Jose, United States, p. CTuZ1
|
[12] |
Xu P F, Yang T, Ji H M, Cao Y L, Gu Y X, Liu Y, Ma W Q and Wang Z G 2010 J. Appl. Phys. 107 013102
|
[13] |
Su X B, Ding Y, Ma B, Zhang K L, Sh Z, Li J L, Cui X R, Xu Y Q, Ni H Q and Niu Z C 2018 Nanoscale Res. Lett. 13 59
|
[14] |
Joyce P B, Krzyzewski T J, Bell G R, Jones T S, Malik S, Childs D and Murray R 2000 Phys. Rev. B 62 10891
|
[15] |
Walther T, Cullis A G, Norris D J and Hopkinson M 2001 Phys. Rev. Lett. 86 2381
|
[16] |
Nakata Y, Mukai K, Sugawara M, Ohtsubo K, Ishikawa H and Yokoyama N 2000 J. Cryst. Growth 208 93
|
[17] |
Ra'ed M H and Eyman T S 2016 IOSR-JAP 8 01
|
[18] |
Guimard D, Ishida M, Li L, Nishioka M, Tanaka Y, Sudo H, Yamamoto T, Kondo H, Sugawara M and Arakawa Y 2009 Appl. Phys. Lett. 94 103116
|
[19] |
Rajesh M, Bordel D, Kawaguchi K, Faure S, Nishioka M, Augendre E, Clavelier L, Guimard D and Arakawa Y 2011 J. Cryst. Growth 315 114
|
[20] |
Li T H, Wang Q, Guo X, Jia Z G, Wang P Y, Ren X M, Huang Y Q and Cai S W 2012 Phys. E 44 1146
|
[21] |
Liu H, Wang Q, Chen J, Liu K and Ren X M 2016 J. Cryst. Growth 455 168
|
[22] |
Niu Z C, Ni H Q, Fang Z D, Gong Z, Zhang S Y, Wu D H, Sun Z, Zhao H, Peng H L, Han Q and Wu R H 2006 Chin. J. Semicond. 27 482 0253-4177(2006)03-0482-07
|
[23] |
Yue L, Gong Q, Cao C F, Yan J Y, Wang Y, Cheng R H and Li S G 2013 Chin. Opt. Lett. 11 061401
|
[24] |
Akahane K, Yamamoto N and Tsuchiya M 2008 Appl. Phys. Lett. 93 041121
|
[25] |
Akahane K, Matsumoto A, Umezawa T, Yamamoto N and Kawanishi T 2016 2016 Proceedings of International Semiconductor Laser Conference, September 12-15, 2016 Kobe, Japan, p. WE46
|
[26] |
Yamaguchi K, Yujobo K and Kaizu T 2000 Jpn. J. Appl. Phys. 39 L1245
|
[27] |
Nishi K, Saito H, Sugou S and Lee J S 1999 Appl. Phys. Lett. 74 1111
|
[28] |
Konishi T, Clarke E, Burrows C W, Bomphrey J J, Murray R and Bell G R 2017 Sci. Rep. 7 42606
|
[29] |
Liu W S 2013 J. Alloys Compd. 571 153
|
[30] |
Akahane K, Yamamoto N and Kawanishi T 2010 IEEE Photonic. Tech. L. 22 103
|
[31] |
Wang Z M, Feng S L, Lv Z D, Yang X P, Chen Z G, Song C Y, Xu Z Y, Zheng H Z, Wang F L, Han P D and Duan X F 1998 Acta Phys. Sin. 47 89 (in Chinese)
|
[32] |
Li L, Guimard D, Rajesh M and Arakawa Y 2008 Appl. Phys. Lett. 92 263105
|
[33] |
Kwoen J, Jang B, Lee J, Kageyama T, Watanabe K and Arakawaet Y 2018 Opt. Express 26 11568
|
[34] |
Ji H M, Yang T, Cao Y L, Xu P F, Gu Y X, Ma W Q and Wang Z G 2010 Chin. Phys. Lett. 27 027801
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|