|
|
Fabrication of large-scale graphene/2D-germanium heterostructure by intercalation |
Hui Guo(郭辉)1, Xueyan Wang(王雪艳)1, De-Liang Bao(包德亮)1, Hong-Liang Lu(路红亮)1, Yu-Yang Zhang(张余洋)1,2, Geng Li(李更)1,2, Ye-Liang Wang(王业亮)1, Shi-Xuan Du(杜世萱)1,2, Hong-Jun Gao(高鸿钧)1,2 |
1 Institute of Physics and University of Chinese Academy of Sciences, Beijing 100190, China;
2 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We report a large-scale, high-quality heterostructure composed of vertically-stacked graphene and two-dimensional (2D) germanium. The heterostructure is constructed by the intercalation-assisted technique. We first synthesize large-scale, single-crystalline graphene on Ir(111) surface and then intercalate germanium at the interface of graphene and Ir(111). The intercalated germanium forms a well-defined 2D layer with a 2×2 superstructure with respect to Ir(111). Theoretical calculations demonstrate that the 2D germanium has a double-layer structure. Raman characterizations show that the 2D germanium effectively weakens the interaction between graphene and Ir substrate, making graphene more like the intrinsic one. Further experiments of low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy (XPS) confirm the formation of large-scale and high-quality graphene/2D-germanium vertical heterostructure. The integration of graphene with a traditional 2D semiconductor provides a platform to explore new physical phenomena in the future.
|
Received: 28 April 2019
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
61.05.jh
|
(Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
Fund: Project supported by the National Key Research & Development Program of China (Grant Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61390501, 61888102, and 51872284), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), Beijing Nova Program, China (Grant No. Z181100006218023), and the University of Chinese Academy of Sciences. |
Corresponding Authors:
Shi-Xuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Hui Guo(郭辉), Xueyan Wang(王雪艳), De-Liang Bao(包德亮), Hong-Liang Lu(路红亮), Yu-Yang Zhang(张余洋), Geng Li(李更), Ye-Liang Wang(王业亮), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Fabrication of large-scale graphene/2D-germanium heterostructure by intercalation 2019 Chin. Phys. B 28 078103
|
[1] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[2] |
Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
|
[3] |
Solís-Fernández P, Bissett M and Ago H 2017 Chem. Soc. Rev. 46 4572
|
[4] |
Wu Z B, Zhang Y Y, Li G, Du S X and Gao H J 2018 Chin. Phys. B 27 077302
|
[5] |
Kang S, Fallahazad B, Lee K, Movva H, Kim K, Corbet C M, Taniguchi T, Watanabe K, Colombo L, Register L F, Tutuc E and Banerjee S K 2015 IEEE Electron Device Lett. 36 405
|
[6] |
Fallahazad B, Lee K, Kang S, Xue J M, Larentis S, Corbet C, Kim K, Movva H C P, Taniguchi T, Watanabe K, Register L F, Banerjee S K and Tutuc E 2015 Nano Lett. 15 428
|
[7] |
Britnell L, Gorbachev R V, Geim A K, Ponomarenko L A, Mishchenko A, Greenaway M T, Fromhold T M, Novoselov K S and Eaves L 2013 Nat. Commun. 4 1794
|
[8] |
Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S and Machida T 2015 Appl. Phys. Lett. 107 023109
|
[9] |
Shim J, Kim H S, Shim Y S, Kang D H, Park H Y, Lee J, Jeon J, Jung S J, Song Y J, Jung W S, Lee J, Park S, Kim J, Lee S, Kim Y H and Park J H 2016 Adv. Mater. 28 5293
|
[10] |
Moriya R, Yamaguchi T, Inoue Y, Morikawa S, Sata Y, Masubuchi S and Machida T 2014 Appl. Phys. Lett. 105 083119
|
[11] |
Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nat. Nanotech. 8 100
|
[12] |
Gao Y X, Zhang Y Y and Du S X 2019 J. Phys.: Condens. Matter 31 194001
|
[13] |
Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650
|
[14] |
Wang Y Y, Ni Z Y, Liu Q H, Quhe R G, Zheng J X, Ye M, Yu D P, Shi J J, Yang J B, Li J and Lu J 2015 Adv. Funct. Mater. 25 68
|
[15] |
Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
|
[16] |
Li G, Zhang Y Y, Guo H, Huang L, Lu H L, Lin X, Wang Y L, Du S X and Gao H J 2018 Chem. Soc. Rev. 47 6073
|
[17] |
Verbitskiy N I, Fedorov A V, Profeta G, Stroppa A, Petaccia L, Senkovskiy B, Nefedov A, Wöll C, Usachov D Y, Vyalikh D V, Yashina L V, Eliseev A A, Pichler T and Grüneis A 2016 Sci. Rep. 5 17700
|
[18] |
Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C and Gao H J 2012 Appl. Phys. Lett. 100 093101
|
[19] |
Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q and Gao H J 2015 Adv. Mater. Interfaces 2 1400543
|
[20] |
Guo H, Chen H, Que Y D, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 056107
|
[21] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[22] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[23] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[24] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[25] |
Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
|
[26] |
Lee K, Murray É D, Kong L Z, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
|
[27] |
Mullet C H, Stenger B H, Dur, A M, Morad J A, Sato Y, Poppenheimer E C and Chiang S 2017 Surf. Sci. 666 96
|
[28] |
Emtsev K V, Zakharov A A, Coletti C, Forti S and Starke U 2011 Phys. Rev. B 84 125423
|
[29] |
Baringhaus J, Stöhr A, Forti S, Krasnikov S A, Zakharov A A, Starke U and Tegenkamp C 2014 Appl. Phys. Lett. 104 261602
|
[30] |
Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F E, McCarty K F and Rotenberg E 2011 Phys. Rev. B 83 125428
|
[31] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|