Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078103    DOI: 10.1088/1674-1056/28/7/078103
RAPID COMMUNICATION Prev   Next  

Fabrication of large-scale graphene/2D-germanium heterostructure by intercalation

Hui Guo(郭辉)1, Xueyan Wang(王雪艳)1, De-Liang Bao(包德亮)1, Hong-Liang Lu(路红亮)1, Yu-Yang Zhang(张余洋)1,2, Geng Li(李更)1,2, Ye-Liang Wang(王业亮)1, Shi-Xuan Du(杜世萱)1,2, Hong-Jun Gao(高鸿钧)1,2
1 Institute of Physics and University of Chinese Academy of Sciences, Beijing 100190, China;
2 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We report a large-scale, high-quality heterostructure composed of vertically-stacked graphene and two-dimensional (2D) germanium. The heterostructure is constructed by the intercalation-assisted technique. We first synthesize large-scale, single-crystalline graphene on Ir(111) surface and then intercalate germanium at the interface of graphene and Ir(111). The intercalated germanium forms a well-defined 2D layer with a 2×2 superstructure with respect to Ir(111). Theoretical calculations demonstrate that the 2D germanium has a double-layer structure. Raman characterizations show that the 2D germanium effectively weakens the interaction between graphene and Ir substrate, making graphene more like the intrinsic one. Further experiments of low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy (XPS) confirm the formation of large-scale and high-quality graphene/2D-germanium vertical heterostructure. The integration of graphene with a traditional 2D semiconductor provides a platform to explore new physical phenomena in the future.

Keywords:  graphene      two-dimensional germanium      heterostructure      intercalation  
Received:  28 April 2019      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  61.05.jh (Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: 

Project supported by the National Key Research & Development Program of China (Grant Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61390501, 61888102, and 51872284), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), Beijing Nova Program, China (Grant No. Z181100006218023), and the University of Chinese Academy of Sciences.

Corresponding Authors:  Shi-Xuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Hui Guo(郭辉), Xueyan Wang(王雪艳), De-Liang Bao(包德亮), Hong-Liang Lu(路红亮), Yu-Yang Zhang(张余洋), Geng Li(李更), Ye-Liang Wang(王业亮), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Fabrication of large-scale graphene/2D-germanium heterostructure by intercalation 2019 Chin. Phys. B 28 078103

[1] Geim A K and Grigorieva I V 2013 Nature 499 419
[2] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
[3] Solís-Fernández P, Bissett M and Ago H 2017 Chem. Soc. Rev. 46 4572
[4] Wu Z B, Zhang Y Y, Li G, Du S X and Gao H J 2018 Chin. Phys. B 27 077302
[5] Kang S, Fallahazad B, Lee K, Movva H, Kim K, Corbet C M, Taniguchi T, Watanabe K, Colombo L, Register L F, Tutuc E and Banerjee S K 2015 IEEE Electron Device Lett. 36 405
[6] Fallahazad B, Lee K, Kang S, Xue J M, Larentis S, Corbet C, Kim K, Movva H C P, Taniguchi T, Watanabe K, Register L F, Banerjee S K and Tutuc E 2015 Nano Lett. 15 428
[7] Britnell L, Gorbachev R V, Geim A K, Ponomarenko L A, Mishchenko A, Greenaway M T, Fromhold T M, Novoselov K S and Eaves L 2013 Nat. Commun. 4 1794
[8] Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S and Machida T 2015 Appl. Phys. Lett. 107 023109
[9] Shim J, Kim H S, Shim Y S, Kang D H, Park H Y, Lee J, Jeon J, Jung S J, Song Y J, Jung W S, Lee J, Park S, Kim J, Lee S, Kim Y H and Park J H 2016 Adv. Mater. 28 5293
[10] Moriya R, Yamaguchi T, Inoue Y, Morikawa S, Sata Y, Masubuchi S and Machida T 2014 Appl. Phys. Lett. 105 083119
[11] Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nat. Nanotech. 8 100
[12] Gao Y X, Zhang Y Y and Du S X 2019 J. Phys.: Condens. Matter 31 194001
[13] Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650
[14] Wang Y Y, Ni Z Y, Liu Q H, Quhe R G, Zheng J X, Ye M, Yu D P, Shi J J, Yang J B, Li J and Lu J 2015 Adv. Funct. Mater. 25 68
[15] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[16] Li G, Zhang Y Y, Guo H, Huang L, Lu H L, Lin X, Wang Y L, Du S X and Gao H J 2018 Chem. Soc. Rev. 47 6073
[17] Verbitskiy N I, Fedorov A V, Profeta G, Stroppa A, Petaccia L, Senkovskiy B, Nefedov A, Wöll C, Usachov D Y, Vyalikh D V, Yashina L V, Eliseev A A, Pichler T and Grüneis A 2016 Sci. Rep. 5 17700
[18] Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C and Gao H J 2012 Appl. Phys. Lett. 100 093101
[19] Que Y D, Zhang Y, Wang Y L, Huang L, Xu W Y, Tao J, Wu L J, Zhu Y M, Kim K, Weinl M, Schreck M, Shen C M, Du S X, Liu Y Q and Gao H J 2015 Adv. Mater. Interfaces 2 1400543
[20] Guo H, Chen H, Que Y D, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X and Gao H J 2019 Chin. Phys. B 28 056107
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[25] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[26] Lee K, Murray É D, Kong L Z, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[27] Mullet C H, Stenger B H, Dur, A M, Morad J A, Sato Y, Poppenheimer E C and Chiang S 2017 Surf. Sci. 666 96
[28] Emtsev K V, Zakharov A A, Coletti C, Forti S and Starke U 2011 Phys. Rev. B 84 125423
[29] Baringhaus J, Stöhr A, Forti S, Krasnikov S A, Zakharov A A, Starke U and Tegenkamp C 2014 Appl. Phys. Lett. 104 261602
[30] Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F E, McCarty K F and Rotenberg E 2011 Phys. Rev. B 83 125428
[31] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[9] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[10] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[13] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!