Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078105    DOI: 10.1088/1674-1056/28/7/078105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method

Yan-Yan Zhang(张燕燕)1, Ran Cheng(程然)1, Dong Ni(倪东)2, Ming Tian(田明)3, Ji-Wu Lu(卢继武)4, Yi Zhao(赵毅)1
1 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
2 State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China;
3 Shanghai Huali Microelectronics Corporation, Shanghai 200120, China;
4 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Abstract  

Thermal conductivity is an important material parameter of silicon when studying the performance and reliability of devices or for guiding circuit design when considering heat dissipation, especially when the self-heating effect becomes prominent in ultra-scaled MOSFETs. The cross-plane thermal conductivity of a thin silicon film is lacking due to the difficulty in sensing high thermal conductivity in the vertical direction. In this paper, a feasible method that utilizes an ultra-fast electrical pulse within 20 μs combined with the hot strip technique is adopted. To the best of our knowledge, this is the first work that shows how to extract the cross-plane thermal conductivity of sub-50 nm (30 nm, 17 nm, and 10 nm) silicon films on buried oxide. The ratio of the extracted cross-plane thermal conductivity of the silicon films over the bulk value is only about 6.9%, 4.3%, and 3.8% at 300 K, respectively. As the thickness of the films is smaller than the phonon mean free path, the classical heat transport theory fails to predict the heat dissipation in nanoscale transistors. Thus, in this study, a ballistic model, derived from the heat transport equation based on extended-irreversible-hydrodynamics (EIT), is used for further investigation, and the simulation results exhibit good consistence with the experimental data. The extracted effective thermal data could provide a good reference for precise device simulations and thermoelectric applications.

Keywords:  cross-plane thermal conductivity      ultra-fast transient hot strip method  
Received:  25 March 2019      Revised:  22 April 2019      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  63.20.dd (Measurements)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: 

Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ19F040001), the National Natural Science Foundation of China (Grant No. 61473287), and the NSFC-Zhejiang Joint Fund for the Integration of Industrialization Informatization, China (Grant No. U1609213).

Corresponding Authors:  Ji-Wu Lu     E-mail:  jiwu_lu@hnu.edu.cn

Cite this article: 

Yan-Yan Zhang(张燕燕), Ran Cheng(程然), Dong Ni(倪东), Ming Tian(田明), Ji-Wu Lu(卢继武), Yi Zhao(赵毅) Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method 2019 Chin. Phys. B 28 078105

[1] Guillom M, Chang J, Bryant A, Fuller N, Wang X, Newbury J, Babich K, Ott J, Haran B, Yu R, Lavoie C, Klaus D, Zhang Y, Sikorski E, Graham W, To B, Lofaro M, Tomello J, Koli D, Yang B, Pyzyna A, Neumeyer D, Khater M, Yagishita A, Kawasaki H and Haensch W 2008 VLSI Technol. Symp., June 17-19, 2008 Honolulu, United States, p. 12
[2] Zheng Z J, Yu X, Zhang Y Y, Xie M, Cheng R and Zhao Y 2018 Tran. Elec. Dev. 65 895
[3] Qu Y M, Lin X, Li J K, Cheng R, Yu X, Zheng Z J, Lu J W, Chen B and Zhao Y 2017 Int. Electron. Devices Meeting, December 2-6, 2017 San Francisco, United States, p. 39.2.1
[4] Qu Y M, Chen B, Liu W, Han J H, Lu J W and Zhao Y 2018 Microelectron. Reliab. 85 93
[5] Kumar U S and Rao V R 2017 Tran. Elec. Dev. 64 1404
[6] Golgan E G, Polastre R J, Knickerbocker J 2013 Proc. IEEE Semicond. Therm. Meas. Manage. Symp., March 17-21, 2013 San Jose, United States, p. 23
[7] Lee J, Lim J and Yang P 2015 Nano Lett. 15 3273
[8] Ferrando-Villalba P, Lopeamdia A F, Abad L, Llobet J, Molina-Ruiz M, Garcia G, Gerboles M, Alvarez F X, Goni A R, Munoz-Pascual F J and Rodriguez-Viejo J 2014 Nanotechnology 25 185402
[9] Jeong C, Datta S and Lunstrom M 2011 J. Appl. Phys. 109 073718
[10] Alvarez F X, Jou D and Sellitto A 2009 J. Appl. Phys. 105 014317
[11] Jeong C, Datta S and Lundstrom M 2012 J. Appl. Phys. 111 093708
[12] Liu W, Etessam-Yazdani K, Hussin R and Asheghi M 2006 Trans. Elec. Dev. 53 1868
[13] Holl, M G 1964 Phys. Rev. 134 A471
[14] Gustafsson S E, Karawacki E and Khan M N 1979 J. Phys. D: Appl. Phys. 12 1411
[15] Gustafsson S E, Karawacki E and Chohan M N 1986 J. Phys. D: Appl. Phys. 19 727
[16] Log T and Metallinou 1992 Rev. Sci. Instrum. 63 3966
[17] Cohen E and Glicksman 2014 J. Heat. Transfer 136 041301
[18] Cahill D G, Fischer H E, Klitsner T, Swartz E T and Pohl R O 1989 J. Vac. Sci. Technol. A Vac. Surf. Films 7 1259
[19] He P, Liu L and Tian L 2002 Appl. Phys. Lett. 81 1896
[20] Adu K W, Gutierrez H R and Eklund P C 2008 Nanosilicon (Philadelphia: Vijay Kumar) P. 258
[21] Hopkins P E 2013 ISRN Mech. Eng. 2013 1
[22] http://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Si [2019-4-22]
[23] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar and Yang P 2008 Nature 451 163
[1] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[2] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[3] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[4] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[5] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[6] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[7] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[8] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[9] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[10] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[11] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[12] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[13] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[14] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[15] Polarization resolved analysis of phonon transport in a multi-terminal system
Yun-Feng Gu(顾云风), Liu-Tong Zhu(朱留通), Xiao-Li Wu(吴晓莉). Chin. Phys. B, 2019, 28(12): 124401.
No Suggested Reading articles found!