Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 076401    DOI: 10.1088/1674-1056/28/7/076401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Semiconductor-metal transition in GaAs nanowires under high pressure

Yi-Lan Liang(梁艺蓝)1, Zhen Yao(姚震)1, Xue-Tong Yin(殷雪彤)1, Peng Wang(王鹏)1, Li-Xia Li(李利霞)2, Dong Pan(潘东)2, Hai-Yan Li(李海燕)1, Quan-Jun Li(李全军)1, Bing-Bing Liu(刘冰冰)1, Jian-Hua Zhao(赵建华)2
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

We investigate the structural phase transitions and electronic properties of GaAs nanowires under high pressure by using synchrotron x-ray diffraction and infrared reflectance spectroscopy methods up to 26.2 GPa at room temperature. The zinc-blende to orthorhombic phase transition was observed at around 20.0 GPa. In the same pressure range, pressure-induced metallization of GaAs nanowires was confirmed by infrared reflectance spectra. The metallization originates from the zinc-blende to orthorhombic phase transition. Decompression results demonstrated that the phase transition from zinc-blende to orthorhombic and the pressure-induced metallization are reversible. Compared to bulk materials, GaAs nanowires show larger bulk modulus and enhanced transition pressure due to the size effects and high surface energy.

Keywords:  GaAs nanowires      high pressure      structural transition      x-ray diffraction  
Received:  18 February 2019      Revised:  06 April 2019      Accepted manuscript online: 
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  91.60.Gf (High-pressure behavior)  
  63.22.Gh (Nanotubes and nanowires)  
  61.05.cp (X-ray diffraction)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305900), the National Natural Science Foundation of China (Grant No. 11604116), Beijing Municipal Natural Science Foundation, China (Grant No. 1192017), and Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2017156).

Corresponding Authors:  Peng Wang, Dong Pan     E-mail:  wangpengtrrs@jlu.edu.cn;pandong@semi.ac.cn

Cite this article: 

Yi-Lan Liang(梁艺蓝), Zhen Yao(姚震), Xue-Tong Yin(殷雪彤), Peng Wang(王鹏), Li-Xia Li(李利霞), Dong Pan(潘东), Hai-Yan Li(李海燕), Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰), Jian-Hua Zhao(赵建华) Semiconductor-metal transition in GaAs nanowires under high pressure 2019 Chin. Phys. B 28 076401

[1] Bar-Chaim N, Margalit S, Yariv A and Ury I 1982 IEEE Trans. Electron. Devices 29 1372
[2] Yoon J, Jo S, Chun I S, Jung I, Kim H S, Meitl M, Menard E, Li X, Coleman J J, Paik U and Rogers J A 2010 Nature 465 329
[3] Lee K, Lee J, Mazor B A and Forrest S R 2015 Light: Sci. & Appl. 4 e288
[4] Persson A I, Larsson M W, Stenström S, Ohlsson B J, Samuelson L and Wallenberg L R 2004 Nat. Mater. 3 677
[5] Colombo C, Spirkoska D, Frimmer M, Abstreiter G and Fontcuberta i Morral A 2008 Phys. Rev. B 77 155326
[6] Hoang T B, Moses A F, Zhou H L, Dheeraj D L, Fiml, B O and Weman H 2009 Appl. Phys. Lett. 94 133105
[7] Czaban J A, Thompson D A and LaPierre R R 2009 Nano Lett. 9 148
[8] Breuer S, Pfüller C, Flissikowski T, Brandt O, Grahn H T, Geelhaar L and Riechert H 2011 Nano Lett. 11 1276
[9] Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H and Jagadish C 2013 Nat. Photon. 7 963
[10] Wang Z and Nabet B 2015 Nanophotonics 4 491
[11] Burgess T, Saxena D, Mokkapati S, Li Z, Hall C R, Davis J A, Wang Y, Smith L M, Fu L, Caroff P, Tan H H and Jagadish C 2016 Nat. Commun. 7 11927
[12] Wang Y B, Wang L F, Joyce H J, Gao Q, Liao X Z, Mai Y W, Tan H H, Zou J, Ringer S P, Gao H J and Jagadish C 2011 Adv. Mater. 23 1356
[13] Paulitschke P, Seltner N, Lebedev A, Lorenz H and Weig E M 2013 Appl. Phys. Lett. 103 261901
[14] Mante P A, Lehmann S, Anttu N, Dick K A and Yartsev A 2016 Nano Lett. 16 4792
[15] Joyce H J, Parkinson P, Jiang N, Docherty C J, Gao Q, Tan H H, Jagadish C, Herz L M and Johnston M B 2014 Nano Lett. 14 5989
[16] Shtrikman H, Popovitz-Biro R, Kretinin A V and Kacman P 2011 IEEE J. Sel. Top. Quantum Electron. 17 922
[17] Hemley R J 2000 Annu. Rev. Phys. Chem. 51 763
[18] San-Miguel A 2006 Chem. Soc. Rev. 35 876
[19] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[20] Zhang L J, Wang Y C, Lv J and Ma Y M 2017 Nat. Rev. Mater. 2 17005
[21] Besson J M, Itié J P, Polian A, Weill G, Mansot J L and Gonzalez J 1991 Phys. Rev. B 44 4214
[22] Samuel T W, Yogesh K V, Craig A V and Arthur L R 1989 Phys. Rev. B 39 1280
[23] Gupta D C and Kulshrestha S 2008 J. Phys.: Condens. Matter 20 255204
[24] Wang J, Wu B J, Zhang G Z, Tian L H, Gu G R and Gao C X 2016 RSC Adv. 6 10144
[25] Zardo I, Yazji S, Marini C, Uccelli E, Fontcuberta i Morral A, Abstreiter G and Postorino P 2012 ACS Nano 6 3284
[26] Zhou W, Chen X J, Zhang J B, Li X H, Wang Y Q and Goncharov A F 2015 Sci. Rep. 4 6472
[27] Li L X, Pan D, Xue Y Z, Wang X L, Lin M L, Su D, Zhang Q L, Yu X Z, So H, Wei D H, Sun B, Tan P H, Pan A L and Zhao J H 2017 Nano Lett. 17 622
[28] Bao P, Wang Y B, Cui X Y, Gao Q, Yen H W, Liu H W, Kong Yeoh W, Liao X Z, Du S, Hoe Tan H, Jagadish C, Zou J, Ringer S P and Zheng R K 2014 Appl. Phys. Lett. 104 021904
[29] Zhang H F, Guan Z, Cheng B Y, Li Q J, Liu R, Zhang J, Liu Z X, Yang K, Cui T and Liu B B 2017 RSC Adv. 7 31597
[30] Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X D, Wang Z L and Hemley R J 2005 Nat. Mater. 4 922
[31] He Y, Liu J F, Chen W, Wang Y, Wang H, Zeng Y W, Zhang G Q, Wang L N, Liu J, Hu T D, Hahn H, Gleiter H and Jiang J Z 2005 Phys. Rev. B 72 212102
[32] Wang L H, Liu H Z, Qian J, Yang W G and Zhao Y S 2012 J. Phys. Chem. C 116 2074
[33] Li Q J, Zhang H F, Lin C L, Tian F B, Smith J S, Park C, Liu B B and Shen G Y 2017 J. Alloys Compd. 709 260
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[4] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[5] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[6] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[11] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[12] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[13] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[14] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[15] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
No Suggested Reading articles found!