CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Semiconductor-metal transition in GaAs nanowires under high pressure |
Yi-Lan Liang(梁艺蓝)1, Zhen Yao(姚震)1, Xue-Tong Yin(殷雪彤)1, Peng Wang(王鹏)1, Li-Xia Li(李利霞)2, Dong Pan(潘东)2, Hai-Yan Li(李海燕)1, Quan-Jun Li(李全军)1, Bing-Bing Liu(刘冰冰)1, Jian-Hua Zhao(赵建华)2 |
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract We investigate the structural phase transitions and electronic properties of GaAs nanowires under high pressure by using synchrotron x-ray diffraction and infrared reflectance spectroscopy methods up to 26.2 GPa at room temperature. The zinc-blende to orthorhombic phase transition was observed at around 20.0 GPa. In the same pressure range, pressure-induced metallization of GaAs nanowires was confirmed by infrared reflectance spectra. The metallization originates from the zinc-blende to orthorhombic phase transition. Decompression results demonstrated that the phase transition from zinc-blende to orthorhombic and the pressure-induced metallization are reversible. Compared to bulk materials, GaAs nanowires show larger bulk modulus and enhanced transition pressure due to the size effects and high surface energy.
|
Received: 18 February 2019
Revised: 06 April 2019
Accepted manuscript online:
|
PACS:
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
91.60.Gf
|
(High-pressure behavior)
|
|
63.22.Gh
|
(Nanotubes and nanowires)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305900), the National Natural Science Foundation of China (Grant No. 11604116), Beijing Municipal Natural Science Foundation, China (Grant No. 1192017), and Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2017156). |
Corresponding Authors:
Peng Wang, Dong Pan
E-mail: wangpengtrrs@jlu.edu.cn;pandong@semi.ac.cn
|
Cite this article:
Yi-Lan Liang(梁艺蓝), Zhen Yao(姚震), Xue-Tong Yin(殷雪彤), Peng Wang(王鹏), Li-Xia Li(李利霞), Dong Pan(潘东), Hai-Yan Li(李海燕), Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰), Jian-Hua Zhao(赵建华) Semiconductor-metal transition in GaAs nanowires under high pressure 2019 Chin. Phys. B 28 076401
|
[1] |
Bar-Chaim N, Margalit S, Yariv A and Ury I 1982 IEEE Trans. Electron. Devices 29 1372
|
[2] |
Yoon J, Jo S, Chun I S, Jung I, Kim H S, Meitl M, Menard E, Li X, Coleman J J, Paik U and Rogers J A 2010 Nature 465 329
|
[3] |
Lee K, Lee J, Mazor B A and Forrest S R 2015 Light: Sci. & Appl. 4 e288
|
[4] |
Persson A I, Larsson M W, Stenström S, Ohlsson B J, Samuelson L and Wallenberg L R 2004 Nat. Mater. 3 677
|
[5] |
Colombo C, Spirkoska D, Frimmer M, Abstreiter G and Fontcuberta i Morral A 2008 Phys. Rev. B 77 155326
|
[6] |
Hoang T B, Moses A F, Zhou H L, Dheeraj D L, Fiml, B O and Weman H 2009 Appl. Phys. Lett. 94 133105
|
[7] |
Czaban J A, Thompson D A and LaPierre R R 2009 Nano Lett. 9 148
|
[8] |
Breuer S, Pfüller C, Flissikowski T, Brandt O, Grahn H T, Geelhaar L and Riechert H 2011 Nano Lett. 11 1276
|
[9] |
Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H and Jagadish C 2013 Nat. Photon. 7 963
|
[10] |
Wang Z and Nabet B 2015 Nanophotonics 4 491
|
[11] |
Burgess T, Saxena D, Mokkapati S, Li Z, Hall C R, Davis J A, Wang Y, Smith L M, Fu L, Caroff P, Tan H H and Jagadish C 2016 Nat. Commun. 7 11927
|
[12] |
Wang Y B, Wang L F, Joyce H J, Gao Q, Liao X Z, Mai Y W, Tan H H, Zou J, Ringer S P, Gao H J and Jagadish C 2011 Adv. Mater. 23 1356
|
[13] |
Paulitschke P, Seltner N, Lebedev A, Lorenz H and Weig E M 2013 Appl. Phys. Lett. 103 261901
|
[14] |
Mante P A, Lehmann S, Anttu N, Dick K A and Yartsev A 2016 Nano Lett. 16 4792
|
[15] |
Joyce H J, Parkinson P, Jiang N, Docherty C J, Gao Q, Tan H H, Jagadish C, Herz L M and Johnston M B 2014 Nano Lett. 14 5989
|
[16] |
Shtrikman H, Popovitz-Biro R, Kretinin A V and Kacman P 2011 IEEE J. Sel. Top. Quantum Electron. 17 922
|
[17] |
Hemley R J 2000 Annu. Rev. Phys. Chem. 51 763
|
[18] |
San-Miguel A 2006 Chem. Soc. Rev. 35 876
|
[19] |
Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
|
[20] |
Zhang L J, Wang Y C, Lv J and Ma Y M 2017 Nat. Rev. Mater. 2 17005
|
[21] |
Besson J M, Itié J P, Polian A, Weill G, Mansot J L and Gonzalez J 1991 Phys. Rev. B 44 4214
|
[22] |
Samuel T W, Yogesh K V, Craig A V and Arthur L R 1989 Phys. Rev. B 39 1280
|
[23] |
Gupta D C and Kulshrestha S 2008 J. Phys.: Condens. Matter 20 255204
|
[24] |
Wang J, Wu B J, Zhang G Z, Tian L H, Gu G R and Gao C X 2016 RSC Adv. 6 10144
|
[25] |
Zardo I, Yazji S, Marini C, Uccelli E, Fontcuberta i Morral A, Abstreiter G and Postorino P 2012 ACS Nano 6 3284
|
[26] |
Zhou W, Chen X J, Zhang J B, Li X H, Wang Y Q and Goncharov A F 2015 Sci. Rep. 4 6472
|
[27] |
Li L X, Pan D, Xue Y Z, Wang X L, Lin M L, Su D, Zhang Q L, Yu X Z, So H, Wei D H, Sun B, Tan P H, Pan A L and Zhao J H 2017 Nano Lett. 17 622
|
[28] |
Bao P, Wang Y B, Cui X Y, Gao Q, Yen H W, Liu H W, Kong Yeoh W, Liao X Z, Du S, Hoe Tan H, Jagadish C, Zou J, Ringer S P and Zheng R K 2014 Appl. Phys. Lett. 104 021904
|
[29] |
Zhang H F, Guan Z, Cheng B Y, Li Q J, Liu R, Zhang J, Liu Z X, Yang K, Cui T and Liu B B 2017 RSC Adv. 7 31597
|
[30] |
Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X D, Wang Z L and Hemley R J 2005 Nat. Mater. 4 922
|
[31] |
He Y, Liu J F, Chen W, Wang Y, Wang H, Zeng Y W, Zhang G Q, Wang L N, Liu J, Hu T D, Hahn H, Gleiter H and Jiang J Z 2005 Phys. Rev. B 72 212102
|
[32] |
Wang L H, Liu H Z, Qian J, Yang W G and Zhao Y S 2012 J. Phys. Chem. C 116 2074
|
[33] |
Li Q J, Zhang H F, Lin C L, Tian F B, Smith J S, Park C, Liu B B and Shen G Y 2017 J. Alloys Compd. 709 260
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|