Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 076101    DOI: 10.1088/1674-1056/ac6db8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure

Hengli Xie(谢恒立)1, Jiaxiang Wang(王家祥)1, Lingrui Wang(王玲瑞)1, Yong Yan(闫勇)2, Juan Guo(郭娟)1, Qilong Gao(高其龙)1, Mingju Chao(晁明举)1, Erjun Liang(梁二军)1, and Xiao Ren(任霄)1,†
1 Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
2 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
Abstract  Germanium diselenide (GeSe2) is a promising candidate for electronic devices because of its unique crystal structure and optoelectronic properties. However, the evolution of lattice and electronic structure of $β$-GeSe2 at high pressure is still uncertain. Here we prepared high-quality $β$-GeSe2 single crystals by chemical vapor transfer (CVT) technique and performed systematic experimental studies on the evolution of lattice structure and bandgap of $β$-GeSe2 under pressure. High-precision high-pressure ultra low frequency (ULF) Raman scattering and synchrotron angle-dispersive x-ray diffraction (ADXRD) measurements support that no structural phase transition exists under high pressure up to 13.80 GPa, but the structure of $β$-GeSe2 turns into a disordered state near 6.91 GPa and gradually becomes amorphous forming an irreversibly amorphous crystal at 13.80 GPa. Two Raman modes keep softening abnormally upon pressure. The bandgap of $β$-GeSe2 reduced linearly from 2.59 eV to 1.65 eV under pressure with a detectable narrowing of 36.5%, and the sample under pressure performs the piezochromism phenomenon. The bandgap after decompression is smaller than that in the atmospheric pressure environment, which is caused by incomplete recrystallization. These results enrich the insight into the structural and optical properties of $β$-GeSe2 and demonstrate the potential of pressure in modulating the material properties of two-dimensional (2D) Ge-based binary material.
Keywords:  high pressure      structural phase transition      Raman spectroscopy scattering      layered material  
Received:  28 March 2022      Revised:  03 May 2022      Accepted manuscript online:  07 May 2022
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  78.30.-j (Infrared and Raman spectra)  
  63.22.Np (Layered systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004339, 11874328, 11904322, 61804047, 22071221, and 21905252), China Postdoctoral Science Foundation (Grant Nos. 2018M640679 and 2019T120629), and the Zhongyuan Academician Foundation (Grant No. ZYQR201810163).
Corresponding Authors:  Xiao Ren     E-mail:  rxphy@zzu.edu.cn

Cite this article: 

Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄) Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure 2022 Chin. Phys. B 31 076101

[1] Geim A K and Grigorieva I V 2013 Nature 499 419
[2] Wu J B, Lin M L, Cong X, Liu H N and Tan P H 2018 Chem. Soc. Rev. 47 1822
[3] Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
[4] Cai Z Y, Liu B L, Zou X L and Cheng H M 2018 Chem. Rev. 118 6091
[5] Xia F N, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899
[6] Pang Y D, Wu E X, Xu Z H, Hu X D, Wu S, Xu L Y, and Liu J 2021 Chin. Phys. B 30 68501
[7] Wang Y, Kim J C, Wu R J, Martinez J, Song X J, Yang J, Zhao F, Mkhoyan K A, Jeong H Y and Chhowalla M 2019 Nature 568 70
[8] Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C M C and Javey A 2014 ACS Nano 8 6259
[9] Mak K F and Shan J 2016 Nat. Photon. 10 216
[10] Guo J, Liu Y, Ma Y, Zhu E B, Lee S, Lu Z X, Zhao Z P, Xu C H, Lee S J, Wu H, Kovnir K, Huang Y and Duan X F 2018 Adv. Mater. 30 1705934
[11] Jin H Y, Guo C X, Liu X, Liu J L, Vasileff A, Jiao Y, Zheng Y and Qiao S Z 2018 Chem. Rev. 118 6337
[12] Li W B, Qian X F and Li J 2021 Nat. Rev. Mater. 6 829
[13] Wang X S, Song Z G, Wen W, Liu H N, Wu J X, Dang C H, Hossain M, Iqbal M A and Xie L M 2019 Adv. Mater. 31 1804682
[14] Ma X L, Zhang R J, An C H, Wu S, Hu X D and Liu J 2019 Chin. Phys. B 28 037803
[15] Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
[16] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702
[17] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128
[18] Voiry D, Yamaguchi H, Li J W, Silva R, Alves D C B, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G and Chhowalla M 2013 Nat. Mater. 12 850
[19] Wang L R, Yao P P, Wang F, Li S F, Chen Y P, Xia T Y, Guo E J, Wang K, Zou B and Guo H Z 2020 Adv. Sci. 7 1902900
[20] Guo S H, Zhao Y S, Bu K J, Fu Y P, Luo H, Chen M T, Hautzinger M P, Wang Y Q, Jin S, Yang W G and Lu X J 2020 Angew. Chem. Int. Ed. 59 17533
[21] Geng T, Ma Z, Chen Y, Cao Y, Lv P, Li N and Xiao G 2020 Nanoscale 12 1425
[22] Zhang L L, Tang Y L, Khan A R, Hasan M M, Wang P, Yan H, Yildirim T, Torres J F, Neupane G P, Zhang Y P, Li Q and Lu Y R 2020 Adv. Sci. 7 2002697
[23] Guo S H, Bu K J, Li J W, Hu Q Y, Luo H, He Y H, Wu Y H, Zhang D Z, Zhao Y S, Yang W G, Kanatzidis M G and Lu X J 2021 J. Am.Chem. Soc. 143 2545
[24] Oliva R, Laurien M, Dybala F, Kopaczek J, Qin Y, Tongay S, Rubel O and Kudrawiec R 2019 npj 2D Mater. Appl. 3 20
[25] Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M and Chen X J 2014 Phys. Rev. Lett. 113 036802
[26] Zhuang Y K, Dai L D, Wu L, Li H P, Hu H Y, Liu K X, Yang L F and Pu C 2017 Appl. Phys. Lett. 110 122103
[27] Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W and Zhao Y S 2018 Phys. Rev. B 97 235202
[28] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 3731
[29] Yang Y S, Liu S C, Li Z B, Xue D J and Hu J S 2021 Chem. Commun. 57 565
[30] Zhou X, Hu X Z, Zhou S S, Zhang Q, Li H Q and Zhai T Y 2017 Adv. Funct. Mater. 27 1703858
[31] Yang Y S, Liu S C, Yang W, Li Z B, Wang Y, Wang X, Zhang S S, Zhang Y, Long M S, Zhang G M, Xue D J, Hu J S and Wan L J 2018 J. Am.Chem. Soc. 140 4150
[32] Yang Y S, Wang X, Liu S C, Li Z B, Sun Z Y, Hu C G, Xue D J, Zhang G and Hu J S 2019 Adv. Sci. 6 1801810
[33] Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J and Wei Z 2019 Adv. Opt. Mater. 7 1900622
[34] Sabapathy T, Kiran M S R N, Ayiriveetil A, Kar A K, Ramamurty U and Asokan S 2013 Opt. Mater. Express 3 684
[35] Yao J D, Liu Y L, Guo W X, Niu X Y, Li M G, Wu X X, Yu Y, Yan X Y, Xing B R, Zhang S C, Sha J and Wang Y W 2020 Appl. Phys. Lett. 117 153104
[36] Popovic Z V, Jaksic Z, Raptis Y S and Anastassakis E 1998 Phys. Rev. B:Condens. Matter 57 3418
[37] Grzechnik A, Grande T and Stolen S 1998 J. Solid State Chem. 141 248
[38] Fuentes-Cabrera M, Wang H and Sankey O F 2002 J. Phys. Condens. Matter 14 9589
[39] Durandurdu M 2005 Phys. Status Solidi B 242 3085
[40] Huang X L, Li F F, Huang Y P, Wu G, Li X, Zhou Q, Liu B B and Cui T 2016 Chin. Phys. B 25 037401
[41] Song J Y, Fei G, Liu X B, Duan S, Yang B C, Chen X, Singh D J, Liu Y X, Yang L X, Guo J G and Zhang P 2020 J. Mater. Chem. A 8 20054
[42] Rouss Ea U D L, Bauman R P and Porto S 1981 J. Raman Spectrosc. 10 253
[43] Popoviá Z V and Stolz H J 1981 Phys. Stat. Sol. 108 153
[44] Inoue K, Matsuda O and Murase K 1991 Solid State Commun. 79 905
[45] Ren X, Duan L, Hu Y, Li J, Zhang R, Luo H, Dai P and Li Y 2015 Phys. Rev. Lett. 115 197002
[46] Wang X D, Tan J L, Han C Q, Wang J J, Lu L, Du H C, Jia C L, Deringer V L, Zhou J and Zhang W 2020 ACS Nano 14 4456
[47] Popovic Z V, Holtz M, Reimann K and Syassen K 1996 Phys. Status Solidi B (Germany) 198 533
[48] Kundu A, Tristant D, Sheremetyeva N, Yoshimura A, Dias A T, Hazra K S, Meunier V and Puech P 2020 Nano Lett. 20 5929
[49] Bridenbaugh P M, Espinosa G P, Griffiths J E, Phillips J C and Remeika J P 1979 Phys. Rev. B 20 4140
[50] Dong Z H, Zhuravlev K K, Morin S A, Li L S, Jin S and Song Y 2012 J. Phys. Chem. C 116 2102
[51] Chen B J, Deng Z, Wang X C, Feng S M, Yuan Z, Zhang S J, Liu Q Q and Jin C Q 2016 Chin. Phys. B 25 077503
[52] Bera A, Singh A, Sorb Y A, Jenjeti R N, Muthu D V S, Sampath S, Narayana C, Waghmare U V and Sood A K 2020 Phys. Rev. B 102 014103
[53] Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M and Chen X J 2014 Phys. Rev. Lett. 113 036802
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[4] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[5] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[6] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[9] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[10] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[11] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[12] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[13] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[14] Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride
Yuan-Yuan Jin(金园园), Jin-Quan Zhang(张金权), Shan Ling(凌山), Yan-Qi Wang(王妍琪), Song Li(李松), Fang-Guang Kuang(匡芳光), Zhi-Yan Wu(武志燕), and Chuan-Zhao Zhang(张传钊). Chin. Phys. B, 2022, 31(11): 116104.
[15] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
No Suggested Reading articles found!