CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure |
Hengli Xie(谢恒立)1, Jiaxiang Wang(王家祥)1, Lingrui Wang(王玲瑞)1, Yong Yan(闫勇)2, Juan Guo(郭娟)1, Qilong Gao(高其龙)1, Mingju Chao(晁明举)1, Erjun Liang(梁二军)1, and Xiao Ren(任霄)1,† |
1 Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; 2 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract Germanium diselenide (GeSe2) is a promising candidate for electronic devices because of its unique crystal structure and optoelectronic properties. However, the evolution of lattice and electronic structure of $β$-GeSe2 at high pressure is still uncertain. Here we prepared high-quality $β$-GeSe2 single crystals by chemical vapor transfer (CVT) technique and performed systematic experimental studies on the evolution of lattice structure and bandgap of $β$-GeSe2 under pressure. High-precision high-pressure ultra low frequency (ULF) Raman scattering and synchrotron angle-dispersive x-ray diffraction (ADXRD) measurements support that no structural phase transition exists under high pressure up to 13.80 GPa, but the structure of $β$-GeSe2 turns into a disordered state near 6.91 GPa and gradually becomes amorphous forming an irreversibly amorphous crystal at 13.80 GPa. Two Raman modes keep softening abnormally upon pressure. The bandgap of $β$-GeSe2 reduced linearly from 2.59 eV to 1.65 eV under pressure with a detectable narrowing of 36.5%, and the sample under pressure performs the piezochromism phenomenon. The bandgap after decompression is smaller than that in the atmospheric pressure environment, which is caused by incomplete recrystallization. These results enrich the insight into the structural and optical properties of $β$-GeSe2 and demonstrate the potential of pressure in modulating the material properties of two-dimensional (2D) Ge-based binary material.
|
Received: 28 March 2022
Revised: 03 May 2022
Accepted manuscript online: 07 May 2022
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
63.22.Np
|
(Layered systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004339, 11874328, 11904322, 61804047, 22071221, and 21905252), China Postdoctoral Science Foundation (Grant Nos. 2018M640679 and 2019T120629), and the Zhongyuan Academician Foundation (Grant No. ZYQR201810163). |
Corresponding Authors:
Xiao Ren
E-mail: rxphy@zzu.edu.cn
|
Cite this article:
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄) Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure 2022 Chin. Phys. B 31 076101
|
[1] Geim A K and Grigorieva I V 2013 Nature 499 419 [2] Wu J B, Lin M L, Cong X, Liu H N and Tan P H 2018 Chem. Soc. Rev. 47 1822 [3] Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225 [4] Cai Z Y, Liu B L, Zou X L and Cheng H M 2018 Chem. Rev. 118 6091 [5] Xia F N, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899 [6] Pang Y D, Wu E X, Xu Z H, Hu X D, Wu S, Xu L Y, and Liu J 2021 Chin. Phys. B 30 68501 [7] Wang Y, Kim J C, Wu R J, Martinez J, Song X J, Yang J, Zhao F, Mkhoyan K A, Jeong H Y and Chhowalla M 2019 Nature 568 70 [8] Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C M C and Javey A 2014 ACS Nano 8 6259 [9] Mak K F and Shan J 2016 Nat. Photon. 10 216 [10] Guo J, Liu Y, Ma Y, Zhu E B, Lee S, Lu Z X, Zhao Z P, Xu C H, Lee S J, Wu H, Kovnir K, Huang Y and Duan X F 2018 Adv. Mater. 30 1705934 [11] Jin H Y, Guo C X, Liu X, Liu J L, Vasileff A, Jiao Y, Zheng Y and Qiao S Z 2018 Chem. Rev. 118 6337 [12] Li W B, Qian X F and Li J 2021 Nat. Rev. Mater. 6 829 [13] Wang X S, Song Z G, Wen W, Liu H N, Wu J X, Dang C H, Hossain M, Iqbal M A and Xie L M 2019 Adv. Mater. 31 1804682 [14] Ma X L, Zhang R J, An C H, Wu S, Hu X D and Liu J 2019 Chin. Phys. B 28 037803 [15] Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487 [16] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702 [17] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128 [18] Voiry D, Yamaguchi H, Li J W, Silva R, Alves D C B, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G and Chhowalla M 2013 Nat. Mater. 12 850 [19] Wang L R, Yao P P, Wang F, Li S F, Chen Y P, Xia T Y, Guo E J, Wang K, Zou B and Guo H Z 2020 Adv. Sci. 7 1902900 [20] Guo S H, Zhao Y S, Bu K J, Fu Y P, Luo H, Chen M T, Hautzinger M P, Wang Y Q, Jin S, Yang W G and Lu X J 2020 Angew. Chem. Int. Ed. 59 17533 [21] Geng T, Ma Z, Chen Y, Cao Y, Lv P, Li N and Xiao G 2020 Nanoscale 12 1425 [22] Zhang L L, Tang Y L, Khan A R, Hasan M M, Wang P, Yan H, Yildirim T, Torres J F, Neupane G P, Zhang Y P, Li Q and Lu Y R 2020 Adv. Sci. 7 2002697 [23] Guo S H, Bu K J, Li J W, Hu Q Y, Luo H, He Y H, Wu Y H, Zhang D Z, Zhao Y S, Yang W G, Kanatzidis M G and Lu X J 2021 J. Am.Chem. Soc. 143 2545 [24] Oliva R, Laurien M, Dybala F, Kopaczek J, Qin Y, Tongay S, Rubel O and Kudrawiec R 2019 npj 2D Mater. Appl. 3 20 [25] Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M and Chen X J 2014 Phys. Rev. Lett. 113 036802 [26] Zhuang Y K, Dai L D, Wu L, Li H P, Hu H Y, Liu K X, Yang L F and Pu C 2017 Appl. Phys. Lett. 110 122103 [27] Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W and Zhao Y S 2018 Phys. Rev. B 97 235202 [28] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 3731 [29] Yang Y S, Liu S C, Li Z B, Xue D J and Hu J S 2021 Chem. Commun. 57 565 [30] Zhou X, Hu X Z, Zhou S S, Zhang Q, Li H Q and Zhai T Y 2017 Adv. Funct. Mater. 27 1703858 [31] Yang Y S, Liu S C, Yang W, Li Z B, Wang Y, Wang X, Zhang S S, Zhang Y, Long M S, Zhang G M, Xue D J, Hu J S and Wan L J 2018 J. Am.Chem. Soc. 140 4150 [32] Yang Y S, Wang X, Liu S C, Li Z B, Sun Z Y, Hu C G, Xue D J, Zhang G and Hu J S 2019 Adv. Sci. 6 1801810 [33] Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J and Wei Z 2019 Adv. Opt. Mater. 7 1900622 [34] Sabapathy T, Kiran M S R N, Ayiriveetil A, Kar A K, Ramamurty U and Asokan S 2013 Opt. Mater. Express 3 684 [35] Yao J D, Liu Y L, Guo W X, Niu X Y, Li M G, Wu X X, Yu Y, Yan X Y, Xing B R, Zhang S C, Sha J and Wang Y W 2020 Appl. Phys. Lett. 117 153104 [36] Popovic Z V, Jaksic Z, Raptis Y S and Anastassakis E 1998 Phys. Rev. B:Condens. Matter 57 3418 [37] Grzechnik A, Grande T and Stolen S 1998 J. Solid State Chem. 141 248 [38] Fuentes-Cabrera M, Wang H and Sankey O F 2002 J. Phys. Condens. Matter 14 9589 [39] Durandurdu M 2005 Phys. Status Solidi B 242 3085 [40] Huang X L, Li F F, Huang Y P, Wu G, Li X, Zhou Q, Liu B B and Cui T 2016 Chin. Phys. B 25 037401 [41] Song J Y, Fei G, Liu X B, Duan S, Yang B C, Chen X, Singh D J, Liu Y X, Yang L X, Guo J G and Zhang P 2020 J. Mater. Chem. A 8 20054 [42] Rouss Ea U D L, Bauman R P and Porto S 1981 J. Raman Spectrosc. 10 253 [43] Popoviá Z V and Stolz H J 1981 Phys. Stat. Sol. 108 153 [44] Inoue K, Matsuda O and Murase K 1991 Solid State Commun. 79 905 [45] Ren X, Duan L, Hu Y, Li J, Zhang R, Luo H, Dai P and Li Y 2015 Phys. Rev. Lett. 115 197002 [46] Wang X D, Tan J L, Han C Q, Wang J J, Lu L, Du H C, Jia C L, Deringer V L, Zhou J and Zhang W 2020 ACS Nano 14 4456 [47] Popovic Z V, Holtz M, Reimann K and Syassen K 1996 Phys. Status Solidi B (Germany) 198 533 [48] Kundu A, Tristant D, Sheremetyeva N, Yoshimura A, Dias A T, Hazra K S, Meunier V and Puech P 2020 Nano Lett. 20 5929 [49] Bridenbaugh P M, Espinosa G P, Griffiths J E, Phillips J C and Remeika J P 1979 Phys. Rev. B 20 4140 [50] Dong Z H, Zhuravlev K K, Morin S A, Li L S, Jin S and Song Y 2012 J. Phys. Chem. C 116 2102 [51] Chen B J, Deng Z, Wang X C, Feng S M, Yuan Z, Zhang S J, Liu Q Q and Jin C Q 2016 Chin. Phys. B 25 077503 [52] Bera A, Singh A, Sorb Y A, Jenjeti R N, Muthu D V S, Sampath S, Narayana C, Waghmare U V and Sood A K 2020 Phys. Rev. B 102 014103 [53] Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M and Chen X J 2014 Phys. Rev. Lett. 113 036802 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|