CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3 |
Hong Zeng(曾鸿)1,2, Tingting Ye(叶婷婷)1,2, Peng Cheng(程鹏)1,2, Deyuan Yao(姚德元)1,2, and Junfeng Ding(丁俊峰)1,2,† |
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The layered van der Waals antiferromagnetic FePS3 has received considerable attention because long range magnetic ordering can remain with single atoms layer, which offers potential applications in future ultrathin devices. Here, we perform Raman spectroscopy to systematically explore the variations of lattice vibration and crystal structure under pressure up to 18.9 GPa. We observe two structural phase transitions at approximately 4 GPa and 13 GPa, respectively. Moreover, by monitoring spin-related Raman modes, we demonstrate a pressure-induced magnetic structure transition above 2 GPa. These modes disappear accompanying the second structural phase transition and insulator-to-metal transition (IMT), indicating the suppression of long-range magnetic ordering, in agreement with earlier neutron powder diffraction experiments.
|
Received: 23 January 2022
Revised: 28 February 2022
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.52002372,12004387,51672279,51727806,11874361,and 11774354)),Science Challenge Project (Grant No.TZ2016001),and the CASHIPS Director's Fund (Grant No.YZJJ201705). |
Corresponding Authors:
Junfeng Ding,E-mail:junfengding@issp.ac.cn
E-mail: junfengding@issp.ac.cn
|
About author: 2022-3-3 |
Cite this article:
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰) Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3 2022 Chin. Phys. B 31 056109
|
[1] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [2] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [3] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [4] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778 [5] Burch K S, Mandrus D and Park J G 2018 Nature 563 47 [6] Mak K F, Shan J and Ralph D C 2019 Nat. Rev. Phys. 1 646 [7] Huang B, McGuire M A, May A F, Xiao D, Jarillo-Herrero P and Xu X 2020 Nat. Mater. 19 1276 [8] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408 [9] Zhang L S, Zhou J, Li H, Shen L and Feng Y P 2021 Appl. Phys. Rev. 8 021308 [10] Zhang Y, Xu H J, Feng J F, Wu H, Yu G Q and Han X F 2021 Chin. Phys. B 30 118504 [11] Li H, Ruan S and Zeng Y J 2019 Adv. Mater. 31 1900065 [12] Lin H, Yan F, Hu C, Lv Q, Zhu W, Wang Z, Wei Z, Chang K and Wang K 2020 ACS Appl. Mater. Interfaces 12 43921 [13] Tang W, Liu H, Li Z, Pan A and Zeng Y J 2021 Adv. Sci. 8 2100847 [14] Rahman S, Torres J F, Khan A R and Lu Y 2021 ACS Nano 15 17175 [15] Coak M J, Jarvis D M, Hamidov H, Haines C R S, Alireza P L, Liu C, Son S, Hwang I, Lampronti G I, Daisenberger D, Nahai-Williamson P, Wildes A R, Saxena S S and Park J G 2020 J. Phys.: Condens. Matter. 32 124003 [16] Ur Rehman Z, Muhammad Z, Adetunji Moses O, Zhu W, Wu C, He Q, Habib M and Song L 2018 Micromachines-Basel 9 292 [17] Chittari B L, Park Y, Lee D, Han M, MacDonald A H, Hwang E and Jung J 2016 Phys. Rev. B 94 184428 [18] Joy P A and Vasudevan S 1992 Phys. Rev. B 46 5425 [19] Grasso V and Silipigni L 2002 Riv. del Nuovo. Cim. 25 1 [20] Rule K C, McIntyre G J, Kennedy S J and Hicks T J 2007 Phys. Rev. B 76 134402 [21] McCreary A, Simpson J R, Mai T T, McMichael R D, Douglas J E, Butch N, Dennis C, Valdés Aguilar R and Hight Walker A R 2020 Phys. Rev. B 101 064416 [22] Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y H, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K and Balandin A A 2020 ACS Nano 14 2424 [23] Wang X, Du K, Fredrik Liu Y Y, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q 2016 2D Mater. 3 031009 [24] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433 [25] Tsurubayashi M, Kodama K, Kano M, Ishigaki K, Uwatoko Y, Watanabe T, Takase K, and Takano Y 2018 AIP Adv. 8 101307 [26] Haines C R S and Saxena S S 2018 Eur. Phys. J. B 91 196 [27] Coak M J, Jarvis D M, Hamidov H, Wildes A R, Paddison J A M, Liu C, Haines C R S, Dang N T, Kichanov S E, Savenko B N, Lee S, Kratochvilova M, Klotz S, Hansen T C, Kozlenko D P, Park J G and Saxena S S 2021 Phys. Rev. X 11 011024 [28] Wang Y, Ying J, Zhou Z, Sun J, Wen T, Zhou Y, Li N, Zhang Q, Han F, Xiao Y, Chow P, Yang W, Struzhkin V V, Zhao Y and Mao H K 2018 Nat. Commun. 9 1914 [29] Haines C R S, Coak M J, Wildes A R, Lampronti G I, Liu C, Nahai-Williamson P, Hamidov H, Daisenberger D and Saxena S S 2018 Phys. Rev. Lett. 121 266801 [30] Evarestov R A and Kuzmin A 2020 J. Comput. Chem. 41 1337 [31] Zheng Y S, Jiang X X, Xue X X, Dai J Y and Feng Y X 2019 Phys. Rev. B 100 174102 [32] Zhang H X, Niu C P, Zhang J, Zou L J, Zeng Z and Wang X L 2021 Phys. Chem. Chem. Phys. 23 9679 [33] Wang Y G, Zhou Z Y, Wen T, Zhou Y N, Li N, Han F, Xiao Y M, Chow P, Sung J L, Pravica M, Cornelius A L, Yang W G and Zhao Y S 2016 J. Am. Chem. Soc. 138 15751 [43] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 [34] Sun Y J, Pang S M and Zhang J 2021 Chin. Phys. B 30 117104 [35] Kim K, Lee J U and Cheong H 2019 Nanotechnology 30 452001 [36] Xie Q Y, Wu M, Chen L M, Bai G, Zou W Q, Wang W and He L 2019 Chin. Phys. B 28 056102 [37] Wildes A R, Lancon D, Chan M K, Weickert F, Harrison N, Simonet V, Zhitomirsky M E, Gvozdikova M V, Ziman T and Ronnow H M 2020 Phys. Rev. B 101 024415 [38] Klingen W, Eulenberger G and Hahn H 1973 Z. Anorg. Allg. Chem. 401 97 [39] Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L and Zhang Q M 2019 Chin. Phys. B 28 056301 [40] Scagliotti M, Jouanne M, Balkanski M, Ouvrard G and Benedek G 1987 Phys. Rev. B 35 7097 [41] Sekine T, Jouanne M, Julien C and Balkanski M 1990 Phys. Rev. B 42 8382 [42] Ghosh A, Palit M, Maity S, Dwij V, Rana S and Datta S 2021 Phys. Rev. B 103 064431 [44] Naoshi Suzuki and Kamimura H 1973 J. Phys. Soc. Jpn. 35 985 [45] Sun Y J, Tan Q H, Liu X L, Gao Y F and Zhang J 2019 J. Phys. Chem. Lett. 10 3087 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|