Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 076109    DOI: 10.1088/1674-1056/28/7/076109
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Isostructural phase transition-induced bulk modulus multiplication in dopant-stabilized ZrO2 solid solution

Min Wang(王敏)1, Wen-Shu Shen(沈文舒)1, Xiao-Dong Li(李晓东)2, Yan-Chun Li(李延春)2, Guo-Zhao Zhang(张国召)1, Cai-Long Liu(刘才龙)1, Lin Zhao(赵琳)1, Shu-Peng Lv(吕舒鹏)1, Chun-Xiao Gao(高春晓)1, Yong-Hao Han(韩永昊)1
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The electrical transport properties and structures of Y2O3/ZrO2 solid solution have been studied under high pressure up to 23.2 GPa by means of in situ impedance spectroscopy and x-ray diffraction (XRD) measurements. In the impedance spectra, it can be found that the pressure-dependent resistance of Y2O3/ZrO2 presents two different change trends before and after 13.3 GPa, but the crystal symmetry still remains stable in the cubic structure revealed by the XRD measurement and Rietveld refinement. The pressure dependence of the lattice constant and unit cell volume shows that the Y2O3/ZrO2 solid solution undergoes an isostructural phase transition at 13.1 GPa, which is responsible for the abnormal change in resistance. By fitting the volume data with the Birch–Murnaghan equation of state, we found that the bulk modulus B0 of the Y2O3/ZrO2 solid solution increases by 131.9% from 125.2 GPa to 290.3 GPa due to the pressure-induced isostructural phase transition.

Keywords:  high pressure      x-ray diffraction      crystal structure      Y2O3/ZrO2  
Received:  31 January 2019      Revised:  14 May 2019      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  61.50.-f (Structure of bulk crystals)  
  91.60.Gf (High-pressure behavior)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0305900) and the National Natural Science Foundation of China (Grant Nos. 11774126, 11774174, 1674404, and 51772125).

Corresponding Authors:  Yong-Hao Han     E-mail:  hanyh@jlu.edu.cn

Cite this article: 

Min Wang(王敏), Wen-Shu Shen(沈文舒), Xiao-Dong Li(李晓东), Yan-Chun Li(李延春), Guo-Zhao Zhang(张国召), Cai-Long Liu(刘才龙), Lin Zhao(赵琳), Shu-Peng Lv(吕舒鹏), Chun-Xiao Gao(高春晓), Yong-Hao Han(韩永昊) Isostructural phase transition-induced bulk modulus multiplication in dopant-stabilized ZrO2 solid solution 2019 Chin. Phys. B 28 076109

[1] Tang Z J, Li R and Yin J 2013 Chin. Phys. B 22 067702
[2] Bell B D C, Murphy S T, Burr P A, Grimes R W and Wenman M R 2015 J. Appl. Phys. 117 084901
[3] Wang J Y, Zhai W, Jin K X and Chen C L 2011 Chin. Phys. B 20 097202
[4] Teterycz H, Klimkiewicz R and Łaniecki M 2003 Appl. Catal. A Gen. 249 313
[5] Calderon-Moreno J M and Yoshimura M 2002 Solid State Ion. 154-155 125
[6] Yamaguchi T 1994 Catal. Today 20 199
[7] Li J, Zhou X M and Li J B 2008 Rev. Sci. Instrum. 79 123107
[8] Dolan D H and Ao T 2008 Appl. Phys. Lett. 93 021908
[9] Yoo C S, Holmes N C, Ross M, Webb D J and Pike C 1993 Phys. Rev. Lett. 70 3931
[10] Borik M A, Bublik V T, Kulebyakin A V, Lomonova E E, Milovich F O, Myzina V A, Osiko V V, Seryakov S V and Tabachkova N Y 2013 Phys. Solid State 55 1690
[11] Chen D J and Mayo M J 1993 Nanostruct. Mater. 2 469
[12] Hahn H 1993 Nanostruct. Mater. 2 251
[13] Mondal P, Klein A, Jaegermann W and Hahn H 1999 Solid State Ion. 118 331
[14] Tuller H L 2000 Solid State Ion. 131 143
[15] Strickler D W and Carlson W G 1965 J. Am. Ceram. Soc. 48 286
[16] Hirano M, Watanabe S, Kato E, Mizutani Y, Kawai M and Nakamura Y 2004 J. Am. Ceram. Soc. 82 2861
[17] Winnubst A J A, Groot Zevert W F M, Theunissen G S A M and Burggraaf A J 1989 Mater. Sci. Eng. A 109 215
[18] Qi Z M, Shi C S, Wei Y G, Wang Z, Liu T, Hu T D, Zhao Z Y and Li F L 2001 J. Phys.: Condens. Matter 13 11503
[19] Zhang L J, Wang Y C, Lv J and Ma Y M 2017 Nat. Rev. Mater. 2 17005
[20] Zhu P W, Tao Q, Wang L, He Z and Cui T 2018 Chin. Phys. B 27 076103
[21] Desgreniers S and Lagarec K 1999 Phys. Rev. B 59 8467
[22] Haines J, Léger J M, Hull S, Petitet J P, Pereira A S, Perottoni C A and da Jornada J A H 2005 J. Am. Ceram. Soc. 80 1910
[23] Yu X H, Li F F, Han Y H, Hong F, Jin C Q, He Z and Zhou Q 2018 Chin. Phys. B 27 070701
[24] He C Y, Gao C X, Ma Y Z, Li M, Hao A M, Huang X W, Liu B B, Zhang D M, Yu C L, Zou G T, Li Y C, Li H, Li X D and Liu J 2007 Appl. Phys. Lett. 91 092124
[25] Han Y H, Gao C X, Ma Y Z, Liu H W, Pan Y W, Luo J F, Li M, He C Y, Huang X W, Zou G T, Li Y C, Li X D and Liu J 2005 Appl. Phys. Lett. 86 064104
[26] Wang Q L, Liu C L, Gao Y, Ma Y Z, Han Y H and Gao C X 2015 Appl. Phys. Lett. 106 132902
[27] Piermarini G J, Block S, Barnett J D and Forman R A 1975 J. Appl. Phys. 46 2774
[28] Yang J M, Gan X S, Zhao Y, Cui M Q, Zhu T, Zhao Y D, Sun L J, Zheng Lei, Yan F, Hu Z M, Wei M X, Zhang J Y and Yi R Q 2011 Chin. Phys. B 20 010705
[29] Huang N K, Colligon J S, Kheyrandish H and Tang Y S 1993 Nucl. Instr. Meth. B 80-81 1101
[30] Majumdar D and Chatterjee D 1991 J. Appl. Phys. 70 988
[31] Ingo G M and Marletta G 1996 Nucl. Instr. Meth. B 116 440
[32] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 3731
[33] Matsuoka T and Shimizu K 2009 Nature 458 186
[34] Al-Khatatbeh Y, Lee K K M and Kiefer B 2010 Phys. Rev. B 81 214102
[35] Yang J, Zhu F, Zhang Q, Wu Y, Wu X, Qin S, Dong J C and Chen D L 2013 Chin. Phys. Lett. 30 046101
[36] Fan D W, Wei S Y, Liu J, Li Y C and Xie H S 2011 Chin. Phys. Lett. 28 076101
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[4] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[5] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[6] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[7] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[12] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[13] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[14] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[15] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
No Suggested Reading articles found!