Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 076201    DOI: 10.1088/1674-1056/ac7212

High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)

Chuchu Zhu(朱楚楚)1, Hao Su(苏豪)2, Erjian Cheng(程二建)1, Lin Guo(郭琳)1, Binglin Pan(泮炳霖)1, Yeyu Huang(黄烨煜)1, Jiamin Ni(倪佳敏)1, Yanfeng Guo(郭艳峰)2,†, Xiaofan Yang(杨小帆)1,‡, and Shiyan Li(李世燕)1,3,4,§
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China;
2 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China;
4 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Abstract  Topological materials have aroused great interest in recent years, especially when magnetism is involved. Pressure can effectively tune the topological states and possibly induce superconductivity. Here we report the high-pressure study of topological semimetals $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu} $ and Yb), which have the same crystal structure. In antiferromagnetic (AFM) Weyl semimetal EuCd$_{2}$Sb$_{2}$, the Néel temperature (${T}_{\rm N}$) increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa. When pressure is above 14.9 GPa, the AFM peak of resistance disappears, indicating a non-magnetic state. In paramagnetic Dirac semimetal candidate YbCd$_{2}$Sb$_{2}$, pressure-induced superconductivity appears at 1.94 GPa, then ${ T}_{\rm c}$ reaches to a maximum of 1.67 K at 5.22 GPa and drops to zero at about 30 GPa, displaying a dome-shaped temperature-pressure phase diagram. High-pressure x-ray diffraction measurement demonstrates that a crystalline-to-amorphous phase transition occurs at about 16 GPa in YbCd$_{2}$Sb$_{2}$, revealing the robustness of pressure-induced superconductivity against structural instability. Similar structural phase transition may also occur in EuCd$_{2}$Sb$_{2}$, causing the disappearance of magnetism. Our results show that $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu}$ and Yb) is a novel platform for exploring the interplay among magnetism, topology, and superconductivity.
Keywords:  high pressure      topological semimetal      magnetism      superconductivity  
Received:  17 April 2022      Revised:  09 May 2022      Accepted manuscript online:  23 May 2022
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  74.62.Fj (Effects of pressure)  
  75.50.Ee (Antiferromagnetics)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174064) and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). Yanfeng Guo acknowledges the research fund from the State Key Laboratory of Surface Physics and Department of Physics, Fudan University (Grant No. KF2020_09).
Corresponding Authors:  Yanfeng Guo, Xiaofan Yang, Shiyan Li     E-mail:;;

Cite this article: 

Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕) High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb) 2022 Chin. Phys. B 31 076201

[1] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401
[2] Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301
[3] Wu L, Patankar S, Morimoto T, Nair N L, Thewalt E, Little A, Analytis J G, Moore J E and Orenstein J 2017 Nat. Phys. 13 350
[4] He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J and Wang K L 2017 Science 357 294
[5] Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J and Hasan M Z 2015 Science 347 294
[6] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M and Tokura Y 2017 Nat. Mater. 16 516
[7] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
[8] Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M T, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N and Kaminski A 2016 Nat. Mater. 15 1155
[9] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613
[10] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schafer R and Cava R J 2019 Nat. Commun. 10 3424
[11] Bulmash D, Liu C X and Qi X L 2014 Phys. Rev. B 89 081106
[12] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[13] Hosur P and Qi X 2013 Comp. Rend. Phys. 14 857
[14] Xu Y, Song Z, Wang Z, Weng H and Dai X 2019 Phys. Rev. Lett. 122 256402
[15] Rahn M C, Soh J R, Francoual S, Veiga L S I, Strempfer J, Mardegan J, Yan D Y, Guo Y F, Shi Y G and Boothroyd A T 2018 Phys. Rev. B 97 214422
[16] Soh J R, Donnerer C, Hughes K M, Schierle E, Weschke E, Prabhakaran D and Boothroyd A T 2018 Phys. Rev. B 98 064419
[17] Soh J R, de Juan F, Vergniory M G, Schröter N B M, Rahn M C, Yan D Y, Jiang J, Bristow M, Reiss P, Blandy J N, Guo Y F, Shi Y G, Kim T K, McCollam A, Simon S H, Chen Y, Coldea A I and Boothroyd A T 2019 Phys. Rev. B 100 201102
[18] Hua G, Nie S, Song Z, Yu R, Xu G and Yao K 2018 Phys. Rev. B 98 201116
[19] Wang L L, Jo N H, Kuthanazhi B, Wu Y, McQueeney R J, Kaminski A and Canfield P C 2019 Phys. Rev. B 99 245147
[20] Ma J, Wang H, Nie S, Yi C, Xu Y, Li H, Jandke J, Wulfhekel W, Huang Y, West D, Richard P, Chikina A, Strocov V N, Mesot J, Weng H, Zhang S, Shi Y, Qian T, Shi M and Ding H 2020 Adv. Mater. 32 1907565
[21] Su H, Gong B, Shi W, Yang H, Wang H, Xia W, Yu Z, Guo P J, Wang J, Ding L, Xu L, Li X, Wang X, Zou Z, Yu N, Zhu Z, Chen Y, Liu Z, Liu K, Li G and Guo Y 2020 APL Mater. 8 011109
[22] Ma J Z, Nie S M, Yi C J, Jandke J, Shang T, Yao M Y, Naamneh M, Yan L Q, Sun Y, Chikina A, Strocov V N, Medarde M, Song M, Xiong Y M, Xu G, Wulfhekel W, Mesot J, Reticcioli M, Franchini C, Mudry C, Müller M, Shi Y G, Qian T, Ding H and Shi M 2019 Sci. Adv. 5 eaaw4718
[23] Wang H P, Wu D S, Shi Y G and Wang N L 2016 Phys. Rev. B 94 045112
[24] Xu Y, Das L, Ma J Z, Yi C J, Nie S M, Shi Y G, Tiwari A, Tsirkin S S, Neupert T, Medarde M, Shi M, Chang J and Shang T 2021 Phys. Rev. Lett. 126 076602
[25] Niu C, Mao N, Hu X, Huang B and Dai Y 2019 Phys. Rev. B 99 235119
[26] Wang Y, Li C, Li Y, Zhou X B, Wu W, Yu R Z, Zhao J F, Yin C H, Shi Y G, Jin C Q, Luo J L, Zhao L, Xiang T, Liu G D and Zhou X J 2021 Chin. Phys. Lett. 38 077201
[27] Pan X C, Chen X L, Liu H M, Feng Y Q, Wei Z X, Zhou Y H, Chi Z H, Pi L, Yen F, Song F Q, Wan X G, Yang Z R, Wang B G, Wang G H and Zhang Y H 2015 Nat. Commun. 6 7805
[28] Kang D F, Zhou Y Z, Yi W, Yang C L, Guo J, Shi Y G, Zhang S, Wang Z, Zhang C, Jiang S, Li A G, Yang K, Wu Q, Zhang G M, Sun L L and Zhao Z X 2015 Nat. Commun. 6 7804
[29] He L, Jia Y, Zhang S, Hong X, Jin C and Li S 2016 npj Quantum Mater. 1 16014
[30] Cheng E, Xia W, Shi X, Yu Z, Wang L, Yan L, Peets D C, Zhu C, and Su H, Zhang Y, Dai D, Wang X, Zou Z, Yu N, Kou X, Yang W, Zhao W, Guo Y and Li S 2020 npj Quantum Mater. 5 38
[31] Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H k and Zhao Z X 2012 Nature 483 67
[32] Li Y, An C, Hua C, Chen X, Zhou Y, Zhou Y, Zhang R, Park C, Wang Z, Lu Y, Zheng Y, Yang Z and Xu Z A 2018 npj Quantum Mater. 3 58
[33] Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3276
[34] Artmann A, Mewis A, Roepke M and Michels G 1996 Z. Anorg. Allg. Chem. 622 679
[35] Zhang H, Fang L, Tang M B, Man Z Y, Chen H H, Yang X X, Baitinger M, Grin Y and Zhao J T 2010 J. Chem. Phys. 133 194701
[36] Yu F H, Mu H M, Zhuo W Z, Wang Z Y, Wang Z F, Ying J J and Chen X H 2020 Phys. Rev. B 102 180404
[37] Landau L and Ginzburg V 1950 Zh. Eksp. Teor. Fiz. 20 1064
[38] Clogston A M 1962 Phys. Rev. Lett. 9 266
[39] Chandrasekhar B S 1962 Appl. Phys. Lett. 1 7
[40] Birch F 1974 Phys. Rev. 71 809
[41] Yu Z, Chen X, Xia W, Wang N, Lv X, Liu X, Su H, Li Z, Wu D, Wu W, Liu Z, Zhao J, Li M, Li S, Li X, Dong Z, Zhou C, Zhang L, Wang X, Yu N, Zou Z, Luo J, Cheng J, Wang L, Zhong Z and Guo Y 2022 arXiv:2202.06016
[42] ōnuki Y, Nakamura A, Honda F, Aoki D, Tekeuchi T, Nakashima M, Amako Y, Harima H, Matsubayashi K, Uwatoko Y, Kayama S, Kagayama T, Shimizu K, Esakki Muthu S, Braithwaite D, Salce B, Shiba H, Yara T, Ashitomi Y, Akamine H, Tomori K, Hedo M and Nakama T 2017 Philos. Mag. 97 3399
[43] Seiro S and Geibel C 2011 J. Phys.:Condens. Matter 23 375601
[44] Honda F, Okauchi K, Nakamura A, Li D, Aoki D, Akamine H, Ashitomi Y, Hedo M, Nakama T and ōnuki Y 2016 J. Phys. Soc. Jpn. 85 063701
[45] Wada H, Hundley M F, Movshovich R and Thompson J D 1999 Phys. Rev. B 59 1141
[46] Norman M R 2011 Science 332 196
[47] Zhu C C, Yang X F, Xia W, Yin Q W, Wang L S, Zhao C C, Dai D Z, Tu C P, Song B Q, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F and Li S Y 2022 Phys. Rev. B 105 094507
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[9] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!