Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066205    DOI: 10.1088/1674-1056/ac4cbe
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies

Gang Wu(吴刚)1,†, Lu Wang(王璐)3, Kuo Bao(包括)2, Xianli Li(李贤丽)1, Sheng Wang(王升)1, and Chunhong Xu(徐春红)1
1 School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China;
2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
3 Institute of Unconventional Oil&Gas, Northeast Petroleum University, Daqing 163318, China
Abstract  Wide bandgap semiconductors are crucially significant for optoelectronic and thermoelectric device applications. Metal nitride is a class of semiconductor material with great potential. Under high pressure, the bandgap of magnesium nitride was predicted to grow. Raman spectra, ultra-violet-visible (UV-Vis) absorption spectra, and first-principles calculations were employed in this study to analyze the bandgap evolution of Mg3N2. The widening of the bandgap has been first detected experimentally, with the gap increasing from 2.05 eV at 3 GPa to 2.88 eV at 47 GPa. According to the calculation results, the enhanced covalent component is responsible for the bandgap widening.
Keywords:  high pressure      electronic structures      first-principles calculations      alkaline-earth metal nitride  
Received:  29 November 2021      Revised:  13 January 2022      Accepted manuscript online:  19 January 2022
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the Open Project of State Key Laboratory of Superhard Materials, Jilin University (Grant No. 202102) and Young Science Foundation of Northeast Petroleum University (Grant No. 2018QNL-53).
Corresponding Authors:  Gang Wu     E-mail:  wugang614@163.com

Cite this article: 

Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红) Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies 2022 Chin. Phys. B 31 066205

[1] Niewa R and DiSalvo F J 1998 Chem. Mater. 10 2733
[2] Wang X L, Wang Y C, Miao M S, Zhong X, Lv J, Cui T, Li J F, Chen L, Pickard C J and Ma Y M 2012 Phys. Rev. Lett. 109 175502
[3] Liu Z, Li D, Wei S L, Wang W J, Tian F B, Bao K, Duan D F, Yu H Y, Liu B B and Cui T 2017 Inorg. Chem. 56 7494
[4] Römer S R, Dörfler T, Kroll P and Schnick W 2009 Phys. Status Solidi B 246 1604
[5] Hao J, Li Y W, Zhou Q, liu D, Li M, Li F F, Lei W W, Chen X H, Ma Y M, Cui Q L, Zou G T, Liu J and Li X D 2009 Inorg. Chem. 48 9737
[6] Wu P and Tiedje T 2018 Appl. Phys. Lett. 113 082101
[7] Wenzel O, Rein V, Popescu R, Feldmann C and Gerthsen D 2020 Microsc. Microanal. 26 102
[8] Moreno A, Ma G, Reyes S A and Avalos B M 2000 Phys. Rev. B 62 4890
[9] Orhan E, Jobic S, Brec R, Marchand R and Saillard J Y 2002 J. Mater. Chem. 12 2475
[10] Imai Y and Watanabe A 2006 J. Mater. Sci. 41 2435
[11] Ullah M, Murtaza G, Ramay S M and Mahmood A 2017 Mater. Res. Bull. 91 22
[12] Li J, Fan C z, Dong X, Jin Y and He L 2014 J. Phys. Chem. C 118 10238
[13] Zhang Y M, Lin S Y, Zou M, Liu M X, Xu M L, Shen P F, Hao J and Li Y W 2021 Chin. Phys. Lett. 38 018101
[14] Miao J Y, Lu Z S, Peng F and Lu C 2021 Chin. Phys. Lett. 38 066201
[15] Shi X H, Liu B, Yao Z and Liu B B 2020 Chin. Phys. Lett. 37 047101
[16] Shi X H, Li H Y, Yao Z and Liu B B 2020 Acta Phys. Sin. 69 067101 (in Chinese)
[17] Laniel D, Winkler B, Koemets E, Fedotenko T, Bykov M, Bykova E, Dubrovinsky L and Dubrovinskaia N 2019 Nat. Commun. 10 4515
[18] Xia K, Zheng X X, Yuan J N, Liu C, Gao H, Wu Q and Sun J 2019 J. Phys. Chem. C 123 10205
[19] Piermarini G J, Block S, Barnett J D and Forman R A 1975 J. Appl. Phys. 46 2774
[20] Clark S J, Segall M D, Pickard C J, Hasnip P J and Probert M I 2005 Z. Krist.-Cryst. Mater 220 567
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Heyns A M, Prinsloo L C, Range K J and Stassen M 1998 J. Solid State Chem. 137 33
[23] Mott N F 1970 Philos. Mag. 22 903
[24] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi B 15 627
[25] Wu C G, Wu W Y, Gong Y C, Dai B F, He S H and Huang Y H 2015 Acta Phys. Sin. 64 114213 (in Chinese)
[26] Liu Z, Li D, Zhuang Q, Tian F B, Duan D F, Li F F and Cui T 2020 Commun. Chem. 3 42
[27] Zhang Y L, Hao X Z, Huang Y P, Tian F B, Li D, Wang Y C, Song H and Duan D F 2021 Chin. Phys. Lett. 38 026101
[28] Deng Y, Weng R Z, Xu L C, Fang H and Yan H 2011 Acta Phys. Sin. 60 117309 (in Chinese)
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[9] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[10] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[13] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[14] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[15] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
No Suggested Reading articles found!