Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 089101    DOI: 10.1088/1674-1056/ac7557
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions

Yukai Zhuang(庄毓凯)1 and Qingyang Hu(胡清扬)2,†
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Center for High Pressure Science and Technology Advanced Research(HPSTAR), Beijing 100094, China
Abstract  Iron oxides are widely found as ores in Earth's crust and are also important constituents of its interiors. Their polymorphism, composition changes, and electronic structures play essential roles in controlling the structure and geodynamic properties of the solid Earth. While all-natural occurring iron oxides are semiconductors or insulators at ambient pressure, they start to metalize under pressure. Here in this work, we review the electronic conductivity and metallization of iron oxides under high-pressure conditions found in Earth's lower mantle. We summarize that the metallization of iron oxides is generally controlled by the pressure-induced bandgap closure near the Fermi level. After metallization, they possess much higher electrical and thermal conductivity, which will facilitate the thermal convection, support a more stable and thicker D$\prime\prime$ layer, and formulate Earth's magnetic field, all of which will constrain the large-scale dynamos of the mantle and core.
Keywords:  high pressure      metallization      iron oxides      electrical conductivity  
Received:  06 April 2022      Revised:  21 May 2022      Accepted manuscript online:  02 June 2022
PACS:  91.60.Gf (High-pressure behavior)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 42150101 and 42150102). Qingyang Hu is supported by the CAEP Research Project (Grant No. CX20210048) and a Tencent Xplorer Prize (Grant No. XPLORER-2020-1013).
Corresponding Authors:  Qingyang Hu     E-mail:

Cite this article: 

Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬) Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions 2022 Chin. Phys. B 31 089101

[1] Morgan J W and Anders E 1980 Proc. Natl. Acad. Sci. USA 77 6973
[2] Schwertmann U and Taylor R M 1989 Minerals in soil environments (2nd edn.) (Madison:Soil Science Society of America) pp. 379-438
[3] Wagner D B 1995 Philos. East West 45 136
[4] Lavina B, Dera P, Kim E, Meng Y, Downs R T, Weck P F, Sutton S R and Zhao Y 2011 Proc. Natl. Acad. Sci. USA 108 17281
[5] Lavina B and Meng Y 2015 Sci. Adv. 1 e1400260
[6] Koemets E, Fedotenko T, Khandarkhaeva S, Bykov M, Bykova E, Thielmann M, Chariton S, Aprilis G, Koemets I, Glazyrin K, Liermann H P, Hanfland M, Ohtani E, Dubrovinskaia N, McCammon C and Dubrovinsky L 2021 Eur. J. Inorg. Chem. 2021 3048
[7] Bykova E, Dubrovinsky L, Dubrovinskaia N, Bykov M, McCammon C, Ovsyannikov S V, Liermann H P, Kupenko I, Chumakov A I, Ruffer R, Hanfland M and Prakapenka V 2016 Nat. Commun. 7 10661
[8] Sinmyo R, Bykova E, Ovsyannikov S V, McCammon C, Kupenko I, Ismailova L and Dubrovinsky L 2016 Sci. Rep. 6 32852
[9] Hu Q, Kim D Y, Yang W, Yang L, Meng Y, Zhang L and Mao H K 2016 Nature 534 241
[10] Hu Q, Liu J, Chen J, Yan B, Meng Y, Prakapenka V B, Mao W L and Mao H K 2021 Natl. Sci. Rev. 8 nwaa098
[11] Hu Q and Liu J 2021 Geosci. Front. 12 975
[12] Mao H K and Mao W L 2020 Matter Radiat. Extremes 5 038102
[13] Huang S and Hu Q 2022 J. Appl. Phys. 131 070902
[14] Akahama Y, Kawamura H, Hausermann D, Hanfland M and Shimomura O 1995 Phys. Rev. Lett. 74 4690
[15] Ma Y, Oganov A R and Glass C W 2007 Phys. Rev. B 76 064101
[16] Shimizu K, Suhara K, Ikumo M, Eremets M I and Amaya K 1998 Nature 393 767
[17] Yoo C S 2020 Matter Radiat. Extrem. 5 018202
[18] Yoshino T 2009 Surv. Geophys. 31 163
[19] Zhuang Y, Li J, Lu W, Yang X, Du Z and Hu Q 2022 Chin. Phys. Lett. 39 020701
[20] Zhuang Y, Gan B, Cui Z, Tang R, Tao R, Hou M, Jiang G, Popescu C, Garbarino G, Zhang Y and Hu Q 2022 Sci. Bull. 67 748
[21] Hu Q and Mao H K 2021 Matter Radiat. Extrem. 6 068101
[22] Hou M, He Y, Jang B G, Sun S, Zhuang Y, Deng L, Tang R, Chen J, Ke F, Meng Y, Prakapenka V B, Chen B, Shim J H, Liu J, Kim D Y, Hu Q, Pickard C J, Needs R J and Mao H k 2021 Nat. Geosci. 14 174
[23] Ono S, Ohishi Y and Kikegawa T 2007 J. Phys.-Condens. Mat. 19 036205
[24] Ding Y, Cai Z, Hu Q, Sheng H, Chang J, Hemley R J and Mao W L 2012 Appl. Phys. Lett. 100 041903
[25] Ozawa H, Hirose K, Tateno S, Sata N and Ohishi Y 2010 Phys. Earth Planet. In. 179 157
[26] Knittle E, Jeanloz R, Mitchell A C and Nellis W J 1986 Solid State Commun. 59 513
[27] Fischer R A, Campbell A J, Lord O T, Shofner G A, Dera P and Prakapenka V B 2011 Geophys. Res. Lett. 38 L24301
[28] Ohta K, Hirose K, Shimizu K and Ohishi Y 2010 Phys. Rev. B 82 174120
[29] Hamada M, Kamada S, Ohtani E, Mitsui T, Masuda R, Sakamaki T, Suzuki N, Maeda F and Akasaka M 2016 Phys. Rev. B 93 155165
[30] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[31] Shorikov A O, Pchelkina Z V, Anisimov V I, Skornyakov S L and Korotin M A 2010 Phys. Rev. B 82 195101
[32] Leonov I 2015 Phys. Rev. B 92 085142
[33] Zhang P, Cohen R E and Haule K 2017 J. Phys. Conf. Ser. 827 012006
[34] Shim S H, Bengtson A, Morgan D, Sturhahn W, Catalli K, Zhao J, Lerche M and Prakapenka V 2009 Proc. Natl. Acad. Sci. USA 106 5508
[35] Kupenko I, Aprilis G, Vasiukov D M, McCammon C, Chariton S, Cerantola V, Kantor I, Chumakov A I, Ruffer R, Dubrovinsky L and Sanchez-Valle C 2019 Nature 570 102
[36] Pasternak M P, Taylor R D, Jeanloz R, Li X, Nguyen J H and McCammon C A 1997 Phys. Rev. Lett. 79 5046
[37] Kozlenko D P, Dubrovinsky L S, Kichanov S E, Lukin E V, Cerantola V, Chumakov A I and Savenko B N 2019 Sci. Rep. 9 4464
[38] Pasternak M P, Rozenberg G K, Machavariani G Y, Naaman O, Taylor R D and Jeanloz R 1999 Phys. Rev. Lett. 82 4663
[39] Bykova E, Bykov M, Prakapenka V, Konôpková Z, Liermann H P, Dubrovinskaia N and Dubrovinsky L 2013 High Press. Res. 33 534
[40] Rozenberg G K, Dubrovinsky L S, Pasternak M P, Naaman O, Le Bihan T and Ahuja R 2002 Phys. Rev. B 65 064112
[41] Kim K H, Lee S H and Choi J S 1985 J. Phys. Chem. Solids 46 331
[42] Mochizuki S 1977 Phys. Stat. Sol. (a) 41 591
[43] Kunes J, Korotin D M, Korotin M A, Anisimov V I and Werner P 2009 Phys. Rev. Lett. 102 146402
[44] Kunes J, Lukoyanov A V, Anisimov V I, Scalettar R T and Pickett W E 2008 Nat. Mater. 7 198
[45] McMahan A K, Held K and Scalettar R T 2003 Phys. Rev. B 67 075108
[46] Greenberg E, Leonov I, Layek S, Konopkova Z, PasternakMP, Dubrovinsky L, Jeanloz R, Abrikosov I A and Rozenberg G K 2018 Phys. Rev. X 8 031059
[47] Wang S, MaoWL, Sorini A P, Chen C C, Devereaux T P, Ding Y, Xiao Y, Chow P, Hiraoka N, Ishii H, Cai Y Q and Kao C C 2010 Phys. Rev. B 82 144428
[48] Ovsyannikov S V, Morozova N V, Karkin A E and Shchennikov V V 2012 Phys. Rev. B 86 205131
[49] Ju S, Cai T Y, Lu H S and Gong C D 2012 J. Am. Chem. Soc. 134 13780
[50] Dubrovinsky L S, Dubrovinskaia N A, McCammon C, Rozenberg G K, Ahuja R, Osorio-Guillen J M, Dmitriev V, Weber H P, Le Bihan T and Johansson B 2003 J. Phys.-Condens. Mat. 15 7697
[51] Fei Y, Frost D J, Mao H K, Prewitt C T and Häusermann D 1999 Am. Mineral. 84 203
[52] Xu W M, Machavariani G Y, Rozenberg G K and Pasternak M P 2004 Phys. Rev. B 70 174106
[53] Glazyrin K, McCammon C, Dubrovinsky L, Merlini M, Schollenbruch K, Woodland A and Hanfland M 2012 Am. Mineral. 97 128
[54] Muramatsu T, Gasparov L V, Berger H, Hemley R J and Struzhkin V V 2016 J. Appl. Phys. 119 135903
[55] Katsura T 2022 J. Geophys. Res.-Sol. Ea. 127 e2021JB023562
[56] Guignard J and Crichton W A 2018 Mineral. Mag. 78 361
[57] Hu Q and Mao H k 2021 Matter Radiat. at Extremes 6 068403
[58] Myhill R, Ojwang D O, Ziberna L, Frost D J, Ballaran T B and Miyajima N 2016 Contrib. Mineral. Petr. 171 51
[59] Hikosaka K, Sinmyo R, Hirose K, Ishii T and Ohishi Y 2019 Am. Mineral. 104 1356
[60] Qin Q Y, Yang A Q, Tao X R, Yang L X, Gou H Y and Zhang P 2021 Chin. Phys. Lett. 38 089101
[61] Yang A, Qin Q, Tao X, Zhang S, Zhao Y and Zhang P 2021 Phys. Lett. A 414 127607
[62] Jang B G, Kim D Y and Shim J H 2017 Phys. Rev. B 95 075144
[63] Jang B G, Liu J, Hu Q, Haule K, Mao H k, Mao W L, Kim D Y and Shim J H 2019 Phys. Rev. B 100 014418
[64] Nishi M, Kuwayama Y, Tsuchiya J and Tsuchiya T 2017 Nature 547 205
[65] Tang R, Liu J, Kim D Y, Mao H k, Hu Q, Yang B, Li Y, Pickard C J, Needs R J, He Y, Liu H, Prakapenka V B, Meng Y and Yan J 2021 Sci. Bull. 66 1954
[66] Tsuchiya T and Tsuchiya J 2011 Proc. Natl. Acad. Sci. USA 108 1252
[67] Nellis W J 2010 Phys. Rev. B 82 092101
[68] Zhuang Y, Su X, Salke N P, Cui Z, Hu Q, Zhang D and Liu J 2021 Geosci. Front. 12 983
[69] Goncharov A F, Haugen B D, Struzhkin V V, Beck P and Jacobsen S D 2008 Nature 456 231
[70] Montague N L, Kellogg L H and Manga M 1998 Geophys. Res. Lett. 25 2345
[71] van den Berg A P, Yuen D A, Beebe G L and Christiansen M D 2010 Phys. Earth Planet. In. 178 136
[72] Chan K H, Zhang K, Li L and Liao X 2008 Phys. Earth Planet. In. 169 204
[73] Vilim R, Stanley S and Elkins-Tanton L 2013 Astrophys. J. 768 L30
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[4] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[5] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[8] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[9] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[10] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[11] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[12] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[13] Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride
Yuan-Yuan Jin(金园园), Jin-Quan Zhang(张金权), Shan Ling(凌山), Yan-Qi Wang(王妍琪), Song Li(李松), Fang-Guang Kuang(匡芳光), Zhi-Yan Wu(武志燕), and Chuan-Zhao Zhang(张传钊). Chin. Phys. B, 2022, 31(11): 116104.
[14] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[15] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
No Suggested Reading articles found!