Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038103    DOI: 10.1088/1674-1056/ac3bad
RAPID COMMUNICATION Prev   Next  

Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD

Xiaotao Hu(胡小涛)1,2, Yimeng Song(宋祎萌)4, Zhaole Su(苏兆乐)1,2, Haiqiang Jia(贾海强)1,2,3, Wenxin Wang(王文新)1,3, Yang Jiang(江洋)1,†, Yangfeng Li(李阳锋)1,‡, and Hong Chen(陈弘)1,3,5,§
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, China;
5 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Gallium nitride (GaN) thin film of the nitrogen polarity (N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition (MOCVD). The misorientation angle is off-axis from C-plane toward M-plane of the substrates, and the angle is 2° and 4° respectively. The nitrogen polarity was confirmed by examining the images of the scanning electron microscope before and after the wet etching in potassium hydroxide (KOH) solution. The morphology was studied by the optical microscope and atomic force microscope. The crystalline quality was characterized by the x-ray diffraction. The lateral coherence length, the tilt angle, the vertical coherence length, and the vertical lattice-strain were acquired using the pseudo-Voigt function to fit the x-ray diffraction curves and then calculating with four empirical formulae. The lateral coherence length increases with the misorientation angle, because higher step density and shorter distance between adjacent steps can lead to larger lateral coherence length. The tilt angle increases with the misorientation angle, which means that the misoriented substrate can degrade the identity of crystal orientation of the N-polar GaN film. The vertical lattice-strain decreases with the misorientation angle. The vertical coherence length does not change a lot as the misorientation angle increases and this value of all samples is close to the nominal thickness of the N-polar GaN layer. This study helps to understand the influence of the misorientation angle of misoriented C-plane sapphire on the morphology, the crystalline quality, and the microstructure of N-polar GaN films.
Keywords:  metal-organic chemical vapor deposition (MOCVD)      misoriented sapphire substrate      misorientation angle      x-ray diffraction      N-polar GaN  
Received:  28 September 2021      Revised:  01 November 2021      Accepted manuscript online:  20 November 2021
PACS:  81.05.Ea (III-V semiconductors)  
  81.20.Ka (Chemical synthesis; combustion synthesis)  
  87.64.Bx (Electron, neutron and x-ray diffraction and scattering)  
  87.64.Aa (Computer simulation)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 61991441), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), and Youth Innovation Promotion Association of Chinese Academy of Sciences. We thank Yang X A from the Advanced Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, for the experimental work of scanning electron microscope (SEM Sirion).
Corresponding Authors:  Yang Jiang, Yangfeng Li, Hong Chen     E-mail:  jiangyang@iphy.ac.cn;liyangfeng12@mails.ucas.ac.cn;hchen@iphy.ac.cn

Cite this article: 

Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘) Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD 2022 Chin. Phys. B 31 038103

[1] Roccato N, Piva F, Santi C D, Brescancin R, Mukherjee K, Buffolo M, Haller C, Carlin J F, Grandjean N, Vallone M, Tibaldi A, Bertazzi F, Goano M, Verzellesi G, Meneghesso G, Zanoni E and Meneghini M 2021 J. Phys. D:Appl. Phys. 54 425105
[2] Ide T, Iida R, Takeuchi T, Wang X L, Takada N and Shimizu M 2021 Jpn. J. Appl. Phys. 60 SBBE01
[3] Pągowska K, Kozubal M, Taube A, Kruszka R, Kamiński M, Kwietniewski N, Juchniewicz M and Szerling A 2021 Mater. Sci. Semicond. Process. 127 105694
[4] Johnson M A L, Fujita S, Rowland W H, Hughes W C, He Y W, El-Masry N A, Cook J W, Schetzina J F, Ren J and Edmond J A 1996 J. Electron. Mater. 25 793
[5] Shen X Q, Okumura H, Furuta K and Nakamura N 2006 Appl. Phys. Lett. 89 171906
[6] Kuo D H and Wu W H 2009 Chem. Vap. Depos. 15 11
[7] Wang Y, Hu F and Hane K 2011 Nanoscale Res. Lett. 6 117
[8] Zhang J, Li S, Xiong H, Tian W, Li Y, Fang Y, Wu Z, Dai J, Xu J, Li X and Chen C 2014 Nanoscale Res. Lett. 9 1
[9] Chen Y, Song H, Li D, Sun X, Jiang H, Li Z, Miao G, Zhang Z and Zhou Y 2014 Mater. Lett. 114 26
[10] Feng Y, Wei H, Yang S, Zhang H, Kong S, Zhao G and Liu X 2014 CrystEngComm 16 7525
[11] Kadys A, Malinauskas T, Grinys T, Dmukauskas M, Mickevičius J, Aleknavičius J, Tomašiūnas R, Selskis A, Kondrotas R, Stanionytė S, Lugauer H and Strassburg M 2015 J. Electron. Mater. 44 188
[12] Nakamura S, Senoh M and Mukai T 1993 Jpn. J. Appl. Phys. 32 L8
[13] Asif Khan M, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
[14] Nakamura S, Masayuki S, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H and Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74
[15] Song Y, He Y, Li Y, Wei H, Qiu P, Huang Q, He Z, Die J, Peng M and Zheng X 2021 Cryst. Growth Des. 21 1778
[16] Li Y, Deng Z, Ma Z, Wang L, Jia H, Wang W, Jiang Y and Chen H 2019 J. Appl. Phys. 126 095705
[17] Li Y, Yan S, Hu X, Song Y, Deng Z, Du C, Wang W, Ma Z, Wang L, Jia H, Wang W, Zhou J, Jiang Y and Chen H 2020 Superlattices Microstruct. 145 106606
[18] Wong M H and Mishra U K 2019 Semiconductors and Semimetals 102 329
[19] Rouviére J L, Arlery M, Niebuhr R, Bachem K H and Briot O 1997 Mater. Sci. Eng. B 43 161
[20] Matsuoka T, Kobayashi Y, Takahata H, Mitate T, Mizuno S, Sasaki A, Yoshimoto M, Ohnishi T and Sumiya M 2006 Phys. Status Solidi Basic Res. 243 1446
[21] Keller S, Fichtenbaum N A, Wu F, Brown D, Rosales A, Denbaars S P, Speck J S and Mishra U K 2007 J. Appl. Phys. 102 083546
[22] de Keijser T H, Langford J I, Mittemeijer E J and Vogels A B P 1982 J. Appl. Crystallogr. 15 308
[23] Metzger T, Höpler R, Born E, Ambacher O, Stutzmann M, Stömmer R, Schuster M, Göbel H, Christiansen S, Albrecht M and Strunk H P 1998 Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 77 1013
[24] de Keijser T, Mittemeijer E J and Rozendaal H C F 1983 J. Appl. Crystallogr. 16 309
[25] Chierchia R, Böttcher T, Heinke H, Einfeldt S, Figge S and Hommel D 2003 J. Appl. Phys. 93 8918
[26] Beccard R, Protzmann H, Schmitz D A, Strauch G, Heuken M and Juergensen H 1998 Proc. SPIE, Optoelectronic Materials and Devices 3419 70
[27] Ng H M, Weimann N G and Chowdhury A 2003 J. Appl. Phys. 94 650
[28] Dunn C G and Koch E F 1957 Acta Metallurgica 5 548
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[3] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[4] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[5] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[6] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[7] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[8] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[9] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[10] Analytical solution of crystal diffraction intensity
Wan-Li Shang(尚万里), Ao Sun(孙奥), Hua-Bin Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Xu-Fei Xie(谢旭飞), Xing-Sen Che(车兴森), Li-Fei Hou(侯立飞), Wen-Hai Zhang(张文海), Miao Li(黎淼), Jun Shi(施军), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2021, 30(11): 116101.
[11] Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3
Zhongxu Li(李忠旭), Kai Huang(黄凯), Yanda Ji(吉彦达), Yang Chen(陈阳), Xiaomeng Zhao(赵晓蒙), Min Zhou(周民), Tiangui You(游天桂), Shibin Zhang(张师斌), and Xin Ou(欧欣). Chin. Phys. B, 2021, 30(10): 106103.
[12] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[13] Semiconductor-metal transition in GaAs nanowires under high pressure
Yi-Lan Liang(梁艺蓝), Zhen Yao(姚震), Xue-Tong Yin(殷雪彤), Peng Wang(王鹏), Li-Xia Li(李利霞), Dong Pan(潘东), Hai-Yan Li(李海燕), Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰), Jian-Hua Zhao(赵建华). Chin. Phys. B, 2019, 28(7): 076401.
[14] Isostructural phase transition-induced bulk modulus multiplication in dopant-stabilized ZrO2 solid solution
Min Wang(王敏), Wen-Shu Shen(沈文舒), Xiao-Dong Li(李晓东), Yan-Chun Li(李延春), Guo-Zhao Zhang(张国召), Cai-Long Liu(刘才龙), Lin Zhao(赵琳), Shu-Peng Lv(吕舒鹏), Chun-Xiao Gao(高春晓), Yong-Hao Han(韩永昊). Chin. Phys. B, 2019, 28(7): 076109.
[15] Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor
Hai-Bo Wang(王海波), Zhen-Lin Luo(罗震林), Yuan-Jun Yang(杨远俊), Qing-Qing Liu(刘清青), Si-Xia Hu(胡思侠), Meng-Meng Yang(杨蒙蒙), Chang-Qing Jin(靳常青), Chen Gao(高琛). Chin. Phys. B, 2019, 28(5): 056103.
No Suggested Reading articles found!