Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046107    DOI: 10.1088/1674-1056/ac3220
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond

Yong Li(李勇)1,†, Xiaozhou Chen(陈孝洲)2, Maowu Ran(冉茂武)1, Yanchao She(佘彦超)1, Zhengguo Xiao(肖政国)1, Meihua Hu(胡美华)3, Ying Wang(王应)1, and Jun An(安军)1
1 Department of Physics and Electrical Engineering, Tongren University, Tongren 554300, China;
2 School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China;
3 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
Abstract  Crystallization of diamond with different nitrogen concentrations was carried out with a FeNiCo-C system at pressure of 6.5 GPa. As the nitrogen concentration in diamond increased, the color of the synthesized diamond crystals changed from colorless to yellow and finally to atrovirens (a dark green). All the Raman peaks for the obtained crystals were located at about 1330 cm-1 and contained only the sp3 hybrid diamond phase. Based on Fourier transform infrared results, the nitrogen concentration of the colorless diamond was < 1 ppm and absorption peaks corresponding to nitrogen impurities were not detected. However, the C-center nitrogen concentration of the atrovirens diamond reached 1030 ppm and the value of A-center nitrogen was approximately 180 ppm with a characteristic absorption peak at 1282 cm-1. Furthermore, neither the NV0 nor the NV- optical color center existed in diamond crystal with nitrogen impurities of less than 1 ppm by photoluminescence measurement. However, Ni-related centers located at 695 nm and 793.6 nm were observed in colorless diamond. The NE8 color center at 793.6 nm has more potential for application than the common NV centers. NV0 and NV- optical color centers coexist in diamond without any additives in the synthesis system. Importantly, only the NV- color center was noticed in diamond with a higher nitrogen concentration, which maximized optimization of the NV-/NV0 ratio in the diamond structure. This study has provided a new way to prepare diamond containing only NV- optical color centers.
Keywords:  high pressure and high temperature      diamond      nitrogen-vacancy color centers  
Received:  06 August 2021      Revised:  15 September 2021      Accepted manuscript online:  22 October 2021
PACS:  61.72.jn (Color centers)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  81.05.uj (Diamond/nanocarbon composites)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064038 and 52072113), the Natural Science Foundation of Guizhou Province Science and Technology Agency (Grant Nos. ZK[2021]019 and ZK[2021]031), the Outstanding Young Science and Technology Talents of Guizhou Pronice, China (Grant No.[2019]5673), and the Open Project of Inner Mongolia Key Lab of High-pressure Phase Functional Materials (Grant No. cfxygy202004).
Corresponding Authors:  Yong Li     E-mail:  likaiyong6@163.com

Cite this article: 

Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军) Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond 2022 Chin. Phys. B 31 046107

[1] Angerer A, Streltsov K, Astner T, Putz S, Sumiya H, Onoda S, Isoya J, Munro W J, Nemoto K, Schmiedmayer J and Majer J 2018 Nat. Phys. 14 1168
[2] Wang Y, Yu S W, Xue Y P, Hei H J, Wu Y X and Shen Y Y 2021 Chin. Phys. B 30 068101
[3] Gao Y, Gao N, Li H D, Yuan X X, Wang Q L, Cheng S H and Liu J S 2018 Nanoscale 10 15788
[4] Li Y, Wang Y, Li S S, Li Z B, Luo K W, Ran M W and Song M S 2019 Acta Phys. Sin. 68 098101 (in Chinese)
[5] Dang C Q, Chou J P, Dai B, Chou C T, Yang Y, Fan R, Lin W T, Meng F L, Hu A, Zhu J Q, Han J C, Minro A M, Li J and Lu Y 2021 Science 371 76
[6] Aharonovich I, Greentree A and Prawer S 2011 Nat. Photon. 5 397
[7] Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
[8] Greentree A D, Fairchild B A, Hossain F M and Prawer S 2008 Mater. Today 11 22
[9] Gaebel T, Domhan M, Wittmann C, Popa I, Jelezko F, Rabeau J, Greentree A, Prawer S, Trajkov E, Hemmer P R and Wrachtrup J 2006 Appl. Phys. B 82 243
[10] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383
[11] Orwa J O, Santori C, Fu K M C, Gibson B, Simpson D, Aharonovich I, Stacey A, Cimmino A, Balog P, Markham M, Twitchen D, Greentree A D, Beausoleil R G and Prawer S 2011 J. Appl. Phys. 109 083530
[12] Pezzagna S, Naydenov B, Jelezko F, Wrachtrup J and Meijer J 2010 New J. Phys. 12 065017
[13] Liu T, Yang X G, Li Z, Hu Y W, Lv C F, Zhao W B, Zang J H and Shan C X 2020 Chin. Phys. B 29 108102
[14] Liu Y X, Wang C, Han S, Chen X, Sun H R and Liu X B 2021 Chin. Phys. Lett. 38 036201
[15] Liu X, Li Q, Yang C F, Xie Q S and Zhang J R 2020 Chin. Phys. B 29 086401
[16] Gui W B, Zhao C S and Liu J 2021 Chin. Phys. Lett. 38 038101
[17] Ma J Y, Kuang J L, Cui W W, Chen J, Gao K, Hao J, Shi J M and Li Y W 2021 Chin. Phys. Lett. 38 027401
[18] Bundy F P, Bovenkerk H P, Strong H M and Wentorf R H 1961 J. Chem. Phys. 35 383
[19] Akaishi M, Handa H, Sato Y, Setaka N, Ohsawa T and Fukunaga O 1982 J. Mater. Sci. 17 193
[20] Li Y, Li Y D, Wang Y, Zhang Jie, Song M S, She Y C and Chen X Z 2018 CrystEngComm 20 4127
[21] Li Y, Jia X P, Yan B M, Zhou Z Z, Fang C, Zhang Z F, Sun S S and Ma H A 2012 J. Crystal Growth 359 49
[22] Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F and Kanda H 2005 Diam. Relat. Mater. 14 1932
[23] Palyanov Y N, Borzdov Y M, Kupriyanov I N, Bataleva Y V, Khokhryakov A F and Sokol A G 2015 Crystal Growth Des. 15 2539
[24] Chen N, Ma H A, Yan B M, Chen L C, Chen L X, Guo L S, Miao X Y, Fang C and Jia X P 2018 Crystal Growth Des. 18 3870
[25] Yelisseyev A P and Nadolinny V A 1995 Diam. Relat. Mater. 4 177
[26] Nadolinny V A, Yelisseyev A P, Baker J M, Newton M E, Twitchen D J, Lawsonk S C, Yuryeva O P and Feigelson B N 1999 J. Phys.:Condens. Matter 11 7357
[27] Collins A T 2002 J. Phys.:Condens. Matter 14 3743
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[6] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[7] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[8] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[9] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[10] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[11] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[12] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[13] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[14] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[15] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
No Suggested Reading articles found!