CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Pressure-induced stable structures and physical properties of Sr-Ge system |
Shuai Han(韩帅)1, Shuai Duan(段帅)1, Yun-Xian Liu(刘云仙)1,2,†, Chao Wang(王超)1,2, Xin Chen(陈欣)1,2, Hai-Rui Sun(孙海瑞)1,2, and Xiao-Bing Liu(刘晓兵)1,2,‡ |
1 Laboratory of High Pressure Physics and Material Science, School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; 2 Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu 273165, China |
|
|
Abstract We have systematically investigated the structures of Sr-Ge system under pressures up to 200 GPa and found six stable stoichiometric structures, they being Sr$_{3}$Ge, Sr$_{2}$Ge, SrGe, SrGe$_{2}$, SrGe$_{3}$, and SrGe$_{4}$. We demonstrate the interesting structure evolution behaviors in Sr-Ge system with the increase of germanium content, Ge atoms arranging into isolated anions in Sr$_{3}$Ge, chains in Sr$_{2}$Ge, square units in SrGe, trigonal units and hexahedrons in SrGe$_{2}$, cages in SrGe$_{3}$, hexagons and Ge$_{8}$ rings in SrGe$_{4}$. The structural diversity produces various manifestations of electronic structures, which is of benefit to electrical transportation. Among them, these novel phases with metallic structures show superconductivity (maximum $T_{\rm c}\sim 8.94$ K for Pmmn Sr$_{3}$Ge). Notably, the n-type semiconducting Pnma SrGe$_{2}$ structure exhibits high Seebeck coefficient and excellent electrical conductivity along the $y$ direction, leading to a high $ZT$ value up to 1.55 at 500 K, which can be potential candidates as high-performance thermoelectrics. Our results will enable the development of fundamental science in condensed matter physics and potential applications in novel electronics or thermoelectric materials.
|
Received: 24 March 2022
Revised: 19 April 2022
Accepted manuscript online: 07 May 2022
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
63.20.dk
|
(First-principles theory)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52102335, 11704220, 11804184, 11974208, and 11804185) and the Shandong Provincial Natural Science Foundation, China (Grant Nos. ZR2021MA050, ZR2017BA020, ZR2018PA010, ZR2019MA054, and ZR2017BA012). |
Corresponding Authors:
Yun-Xian Liu, Xiao-Bing Liu
E-mail: yunxianliu1988@163.com;xiaobing.phy@qfnu.edu.cn
|
Cite this article:
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵) Pressure-induced stable structures and physical properties of Sr-Ge system 2023 Chin. Phys. B 32 016101
|
[1] Hao C M, Li Y, Huang H M and Li Y L 2018 J. Chem. Phys. 148 204706 [2] Shi J, Cui W, Flores-Livas J A, San-Miguel A, Botti S and Marques M A L 2016 Phys. Chem. Chem. Phys. 18 8108 [3] Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Y and Vedernikov M V 2006 Phys. Rev. B 74 045207 [4] Kumar M, Umezawa N and Imai M 2015 J. Alloys Compd. 630 126 [5] Fukuoka H, Suekuni K, Onimaru T and Inumaru K 2011 Inorg. Chem. 50 3901 [6] Fukuoka H and Yamanaka S 2003 Phys. Rev. B 67 094501 [7] Meier K, Cardoso-Gil R, Schnelle W, Rosner H, Burkhardt U and Schwarz U 2010 Z. Anorg. Allg. Chem. 636 1466 [8] Matthias B T, Corenzwit E and Zachariasen W H 1958 Phys. Rev. 112 89 [9] Wei M S, Sung H H and Lee W H 2005 Physica C 424 25 [10] Chung Y R, Sung H H and Lee W H 2004 Phys. Rev. B 70 052511 [11] Hübner J M, Bobnar M, Akselrud L, Prots Y, Grin Y and Schwarz U 2018 Inorg. Chem. 57 10295 [12] Castillo R, Baranov A I, Burkhardt U, Cardoso-Gil R, Schnelle W, Bobnar M and Schwarz U 2016 Inorg. Chem. 55 4498 [13] Wang C, Liu Y, Lv P, Sun H and Duan D 2018 Chem. Eur. J. 24 18757 [14] Nishikawa T, Fukuoka H and Inumaru K 2015 Inorg. Chem. 54 7433 [15] Iyo A, Hase I, Kawashima K, Ishida S, Kito H, Takeshita N, Oka K, Fujihisa H, Gotoh Y, Yoshida Y and Eisaki H 2017 Inorg. Chem. 56 8590 [16] Ud Din H, Reshak A H, Murtaza G, Amin B, Ali R, Alahmed Z A, Chysky J, Bila J and Kamarudin H 2015 Indian J. Phys. 89 369 [17] Evers J, Oehlinger G and Weiss A 1979 Z. Naturforsch B 34 524 [18] Hase I, Yanagisawa T, Iyo A, Eisaki H, Yoshida Y and Kawashima K 2018 J. Phys. Conf. Ser. 1054 012004 [19] Liu Y X, Wang C, Han S, Chen X, Sun H R and Liu X B 2021 Chin. Phys. Lett. 38 036201 [20] Wang C, Liu Y X, Chen X, Lv P, Sun H R and Liu X B 2020 Chin. Phys. Lett. 37 026201 [21] Chu B H, Zhao Y, Yan J L and Li D 2018 Chin. Phys. Lett. 35 016401 [22] Sun G L, Huang H M and Li Y L 2016 Chin. Phys. Lett. 33 026104 [23] Lu M, Huang Y, Tian F, Li D, Duan D, Zhou Q and Cui T 2020 Chin. Phys. B 29 053104 [24] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704 [25] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227 [26] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172 [27] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [30] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 [31] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [32] Dronskowski R and Bloechl P E 1993 J. Phys. Chem. 97 8617 [33] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 [34] Bader R F W 1985 Acc. Chem. Res. 18 9 [35] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354 [36] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204 [37] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635 [38] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 [39] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [40] Kumar M, Zhao H and Persson C 2013 Semicond. Sci. Technol. 28 065003 [41] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67 [42] Betz A, Schäfer H and Weiss A 1967 Z. Naturforsch B 22 103 [43] Ud Din H, Reshak A H, Murtaza G, Amin B, Ali R, Alahmed Z A, Chysky J, Bila J and Kamarudin H 2015 Indian J. Phys. 89 369 [44] Castillo R, Baranov A I, Burkhardt U, Grin Y and Schwarz U 2015 Z. Anorg. Allg. Chem. 641 355 [45] Fukuoka H, Tomomitsu Y and Inumaru K 2011 Inorg. Chem. 50 6372 [46] Zhang Y, Lin S, Zou M, Liu M, Xu M, Shen P, Hao J and Li Y 2021 Chin. Phys. Lett. 38 018101 [47] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 [48] Lyu L, Yang Y, Cen W, Yao B and Ou J 2020 Mater. Res. Express. 7 126304 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|