CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural evolution and molecular dissociation of H2S under high pressures |
Wen-Ji Shen(沈文吉)1, Tian-Xiao Liang(梁天笑)1, Zhao Liu(刘召)1, Xin Wang(王鑫)1, De-Fang Duan(段德芳)1, Hong-Yu Yu(于洪雨)1,†, and Tian Cui(崔田)2,1,‡ |
1 College of Physics, Jilin University, Changchun 130012, China; 2 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract Solid H$_{2}$S as the precursor for H$_{3}$S with incredible superconducting properties under high pressure, has recently attracted extensive attention. Here in this work, we propose two new phases of H$_{2}$S with $P$4$_{2}/n$ and $I$4$_{1}/a$ lattice symmetries in a pressure range of 0 GPa-30 GPa through first-principles structural searches, which complement the phase transition sequence. Further an $ab initio$ molecular dynamics simulation confirms that the molecular phase $P2/c$ of H$_{2}$S is gradually dissociated with the pressure increasing and reconstructs into a new $P$2$_{1}/m$ structure at 160 GPa, exhibiting the superconductivity with $T_{\rm c}$ of 82.5 K. Our results may provide a guidance for the theoretical study of low-temperature superconducting phase of H$_{2}$S.
|
Received: 28 October 2021
Revised: 30 January 2022
Accepted manuscript online: 02 March 2022
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
82.33.Pt
|
(Solid state chemistry)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704143, 11804113, 11604023, and 12122405). |
Corresponding Authors:
Hong-Yu Yu, Tian Cui
E-mail: yuhongyu@jlu.edu.cn;cuitian@jlu.edu.cn
|
Cite this article:
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田) Structural evolution and molecular dissociation of H2S under high pressures 2022 Chin. Phys. B 31 076102
|
[1] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748 [2] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002 [3] Dias R P and Silvera I F 2017 Science 355 715 [4] Zhou D, Jin X, Meng X, Bao G, Ma Y, Liu B and Cui T 2012 Phys. Rev. B. 86 014118 [5] Song H, Zhang Z, Cui T, Pickard C J, Kresin V Z and Duan D 2021 Chin. Phys. Lett. 38 107401 [6] Tian C, Huang X, Huang Y, Li X, Zhou D, Wang X and Cui T 2019 Chin. Phys. Lett. 36 106101 [7] Zhou X, Oganov A R, Dong X, Zhang L, Tian Y and Wang H 2011 Phys. Rev. B 84 054543 [8] Liu M, Duan D, Huang Y, Liang Y, Huang X and Cui T 2019 Chin. Phys. Lett. 36 086401 [9] Gao, G, Wang L, Li M, Zhang J, Howie R T, Gregoryanz E, Struzhkin V V, Wang L and Tse J S 2021 Mater. Today Phys. 21 100546 [10] Wang H, Li X, Gao G, Li Y and Ma Y 2018 Wires. Comput. Mol. 8 e1330 [11] Liu H, Li Y, Gao G, Tse J S and Naumov I I 2016 J. Chem. Phys. C 120 3458 [12] Drozdov A, Eremets M and Troyan I 2015 arXiv:1508.06224[cond-mat.supr-con] [13] Duan D, Liu Y, Tian, F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968 [14] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73 [15] Capitani F, Langerome B, Brubach J B, Roy P, Drozdov A, Eremets M I, Nicol E J, Carbotte J P and Timusk T 2017 Nat. Phys. 13 859 [16] Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B and Cui T 2015 Phys. Rev. B 91 180502 [17] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys. 12 835 [18] Goncharov A F, Lobanov S S, Prakapenka V B and Greenberg E 2017 Phys. Rev. B 95 140101 [19] Quan Y and Pickett W E 2016 Phys. Rev. B 93 104526 [20] Sano W, Koretsune T, Tadano T, Akashi R and Arita R 2016 Phys. Rev. B 93 094525 [21] Cockcroft J K and Fitch A N 1990 Z. Kristallogr. 193 1 [22] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712 [23] Fujihisa H, Yamawaki H, Sakashita M and Aoki K 1998 Phys. Rev. B 57 2651 [24] Fujihisa H, Yamawaki H, Sakashita M, Nakayama A, Yamada T and Aoki K 2004 Phys. Rev. B 69 214102 [25] Wang L, Tian F, Feng W, Chen C, He Z, Ma Y, Cui T, Liu B and Zou G 2010 J. Chem. Phys. 132 164506 [26] Wang L, He Z, Ma Y, Cui T, Liu B and Zou G 2007 J. Phys.:Condens. Matter 19 425232 [27] Shimizu H, Nakamichi Y and Sasaki S 1991 J. Chem. Phys. 95 2036 [28] Rousseau R, Boero M, Bernasconi M, Parrinello M and Terakura K 2000 Phys. Rev. Lett. 85 1254 [29] Sakashita M, Yamawaki H, Fujihisa H, Aoki K, Sasaki S and Shimizu H 1997 Phys. Rev. Lett. 79 1082 [30] Duwal S and Yoo C S 2016 J. Phys. Chem. C 120 21770 [31] Goncharov A F, Lobanov S S, Kruglov I, Zhao X, Chen X, Oganov A R and Prakapenka V B 2016 Phys. Rev. B 93 174105 [32] Li Y, Wang L, Liu H, Zhang Y, Hao J, Pickard C J, Nelson J R, Needs R J, Li W, Huang Y, Errea I, Calandra M, Mauri F and Ma Y 2016 Phys. Rev. B 93 020103 [33] Huang X, Wang X, Duan D, Sundqvist B, Li X, Huang Y, Yu H, Li F, Zhou Q, Liu B and Cui T 2019 Nat. Sci. Rev. 6 713 [34] Majumdar A, Tse J S and Yao Y 2019 Sci. Rep. 9 5023 [35] Majumdar A, Tse J S and Yao Y 2017 Angew. Chem. 129 11548 [36] Yao Y and Tse J S 2018 Chem. Eur. J. 24 1769 [37] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704 [38] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227 [39] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172 [40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [42] Perdew J P and Wang Y 1992 Phys. Rev. B 46 12947 [43] Blöchl P E 1994 Phys. Rev. B 50 17953 [44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [45] Giannozzi P, Baroni S and Bonini N, et al. 2009 J. Phys.:Condens. Matter. 21 395502 [46] Baroni S, Gironcoli S and Corso A D 2001 Rev. Mod. Phys. 73 515 [47] Vanderbilt D 1990 Phy. Rev. B 41 7892 [48] Bernasconi M, Silvestrelli P and Parrinello M 1998 Phys. Rev. Lett. 81 1235 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|