Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 076102    DOI: 10.1088/1674-1056/ac5980
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural evolution and molecular dissociation of H2S under high pressures

Wen-Ji Shen(沈文吉)1, Tian-Xiao Liang(梁天笑)1, Zhao Liu(刘召)1, Xin Wang(王鑫)1, De-Fang Duan(段德芳)1, Hong-Yu Yu(于洪雨)1,†, and Tian Cui(崔田)2,1,‡
1 College of Physics, Jilin University, Changchun 130012, China;
2 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  Solid H$_{2}$S as the precursor for H$_{3}$S with incredible superconducting properties under high pressure, has recently attracted extensive attention. Here in this work, we propose two new phases of H$_{2}$S with $P$4$_{2}/n$ and $I$4$_{1}/a$ lattice symmetries in a pressure range of 0 GPa-30 GPa through first-principles structural searches, which complement the phase transition sequence. Further an $ab initio$ molecular dynamics simulation confirms that the molecular phase $P2/c$ of H$_{2}$S is gradually dissociated with the pressure increasing and reconstructs into a new $P$2$_{1}/m$ structure at 160 GPa, exhibiting the superconductivity with $T_{\rm c}$ of 82.5 K. Our results may provide a guidance for the theoretical study of low-temperature superconducting phase of H$_{2}$S.
Keywords:  high pressure      crystal structure      phase transition      superconductivity  
Received:  28 October 2021      Revised:  30 January 2022      Accepted manuscript online:  02 March 2022
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  82.33.Pt (Solid state chemistry)  
  74.25.-q (Properties of superconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704143, 11804113, 11604023, and 12122405).
Corresponding Authors:  Hong-Yu Yu, Tian Cui     E-mail:  yuhongyu@jlu.edu.cn;cuitian@jlu.edu.cn

Cite this article: 

Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田) Structural evolution and molecular dissociation of H2S under high pressures 2022 Chin. Phys. B 31 076102

[1] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[2] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[3] Dias R P and Silvera I F 2017 Science 355 715
[4] Zhou D, Jin X, Meng X, Bao G, Ma Y, Liu B and Cui T 2012 Phys. Rev. B. 86 014118
[5] Song H, Zhang Z, Cui T, Pickard C J, Kresin V Z and Duan D 2021 Chin. Phys. Lett. 38 107401
[6] Tian C, Huang X, Huang Y, Li X, Zhou D, Wang X and Cui T 2019 Chin. Phys. Lett. 36 106101
[7] Zhou X, Oganov A R, Dong X, Zhang L, Tian Y and Wang H 2011 Phys. Rev. B 84 054543
[8] Liu M, Duan D, Huang Y, Liang Y, Huang X and Cui T 2019 Chin. Phys. Lett. 36 086401
[9] Gao, G, Wang L, Li M, Zhang J, Howie R T, Gregoryanz E, Struzhkin V V, Wang L and Tse J S 2021 Mater. Today Phys. 21 100546
[10] Wang H, Li X, Gao G, Li Y and Ma Y 2018 Wires. Comput. Mol. 8 e1330
[11] Liu H, Li Y, Gao G, Tse J S and Naumov I I 2016 J. Chem. Phys. C 120 3458
[12] Drozdov A, Eremets M and Troyan I 2015 arXiv:1508.06224[cond-mat.supr-con]
[13] Duan D, Liu Y, Tian, F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968
[14] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[15] Capitani F, Langerome B, Brubach J B, Roy P, Drozdov A, Eremets M I, Nicol E J, Carbotte J P and Timusk T 2017 Nat. Phys. 13 859
[16] Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B and Cui T 2015 Phys. Rev. B 91 180502
[17] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys. 12 835
[18] Goncharov A F, Lobanov S S, Prakapenka V B and Greenberg E 2017 Phys. Rev. B 95 140101
[19] Quan Y and Pickett W E 2016 Phys. Rev. B 93 104526
[20] Sano W, Koretsune T, Tadano T, Akashi R and Arita R 2016 Phys. Rev. B 93 094525
[21] Cockcroft J K and Fitch A N 1990 Z. Kristallogr. 193 1
[22] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
[23] Fujihisa H, Yamawaki H, Sakashita M and Aoki K 1998 Phys. Rev. B 57 2651
[24] Fujihisa H, Yamawaki H, Sakashita M, Nakayama A, Yamada T and Aoki K 2004 Phys. Rev. B 69 214102
[25] Wang L, Tian F, Feng W, Chen C, He Z, Ma Y, Cui T, Liu B and Zou G 2010 J. Chem. Phys. 132 164506
[26] Wang L, He Z, Ma Y, Cui T, Liu B and Zou G 2007 J. Phys.:Condens. Matter 19 425232
[27] Shimizu H, Nakamichi Y and Sasaki S 1991 J. Chem. Phys. 95 2036
[28] Rousseau R, Boero M, Bernasconi M, Parrinello M and Terakura K 2000 Phys. Rev. Lett. 85 1254
[29] Sakashita M, Yamawaki H, Fujihisa H, Aoki K, Sasaki S and Shimizu H 1997 Phys. Rev. Lett. 79 1082
[30] Duwal S and Yoo C S 2016 J. Phys. Chem. C 120 21770
[31] Goncharov A F, Lobanov S S, Kruglov I, Zhao X, Chen X, Oganov A R and Prakapenka V B 2016 Phys. Rev. B 93 174105
[32] Li Y, Wang L, Liu H, Zhang Y, Hao J, Pickard C J, Nelson J R, Needs R J, Li W, Huang Y, Errea I, Calandra M, Mauri F and Ma Y 2016 Phys. Rev. B 93 020103
[33] Huang X, Wang X, Duan D, Sundqvist B, Li X, Huang Y, Yu H, Li F, Zhou Q, Liu B and Cui T 2019 Nat. Sci. Rev. 6 713
[34] Majumdar A, Tse J S and Yao Y 2019 Sci. Rep. 9 5023
[35] Majumdar A, Tse J S and Yao Y 2017 Angew. Chem. 129 11548
[36] Yao Y and Tse J S 2018 Chem. Eur. J. 24 1769
[37] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[38] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227
[39] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Perdew J P and Wang Y 1992 Phys. Rev. B 46 12947
[43] Blöchl P E 1994 Phys. Rev. B 50 17953
[44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[45] Giannozzi P, Baroni S and Bonini N, et al. 2009 J. Phys.:Condens. Matter. 21 395502
[46] Baroni S, Gironcoli S and Corso A D 2001 Rev. Mod. Phys. 73 515
[47] Vanderbilt D 1990 Phy. Rev. B 41 7892
[48] Bernasconi M, Silvestrelli P and Parrinello M 1998 Phys. Rev. Lett. 81 1235
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[4] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[9] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[10] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[11] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[12] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[13] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[14] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[15] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
No Suggested Reading articles found!