Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 056201    DOI: 10.1088/1674-1056/ac5989

Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds

Qun Chen(陈群)1, Juefei Wu(吴珏霏)2, Tong Chen(陈统)1, Xiaomeng Wang(王晓梦)1, Chi Ding(丁弛)1, Tianheng Huang(黄天衡)1, Qing Lu(鲁清)1, and Jian Sun(孙建)1,†
1 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100230, China
Abstract  Pressure is an effective and clean way to modify the electronic structures of materials, cause structural phase transitions and even induce the emergence of superconductivity. Here, we predicted several new phases of the ZrXY family at high pressures using the crystal structures search method together with first-principle calculations. In particular, the ZrGeS compound undergoes an isosymmetric phase transition from P4/nmm-I to P4/nmm-II at approximately 82 GPa. Electronic band structures show that all the high-pressure phases are metallic. Among these new structures, P4/nmm-II ZrGeS and P4/mmm ZrGeSe can be quenched to ambient pressure with superconducting critical temperatures of approximately 8.1 K and 8.0 K, respectively. Our study provides a way to tune the structure, electronic properties, and superconducting behavior of topological materials through pressure.
Keywords:  high pressure      ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family      phase transition      superconducting temperature  
Received:  24 January 2022      Revised:  24 February 2022      Accepted manuscript online: 
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  68.35.Gy (Mechanical properties; surface strains)  
  74.25.-q (Properties of superconductors)  
Fund: J.S.thanks the financial support from the National Natural Science Foundation of China (Grant Nos.12125404,11974162,and 11834006) and the Fundamental Research Funds for the Central Universities,China.The calculations were carried out using supercomputers at the High Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures,the high-performance supercomputing center of Nanjing University.
Corresponding Authors:  Jian Sun,     E-mail:
About author:  2022-3-2

Cite this article: 

Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建) Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds 2022 Chin. Phys. B 31 056201

[1] Arnold F, Shekhar C, Wu S C, Sun Y, dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615
[2] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[3] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B 2015 Nat. Phys. 11 645
[4] Wang Z, Zheng Y, Shen Z, Lu Y, Fang H, Sheng F, Zhou Y, Yang X, Li Y, Feng C and Xu Z A 2016 Phys. Rev. B 93 121112
[5] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023
[6] Xiong J, Kushwaha S, Krizan J, Liang T, Cava R J and Ong N P 2016 Europhys. Lett. 114 27002
[7] Ghimire N J, Luo Y, Neupane M, Williams D J, Bauer E D and Ronning F 2015 J. Phys.: Condens. Matter 27 152201
[8] Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38
[9] Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107 217001
[10] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z and Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
[11] Zhang P, Wang Z, Wu X, Yaji K, Ishida Y, Kohama Y, Dai G, Sun Y, Bareille C, Kuroda K, Kondo T, Okazaki K, Kindo K, Wang X, Jin C, Hu J, Thomale R, Sumida K, Wu S, Miyamoto K, Okuda T, Ding H, Gu G D, Tamegai T, Kawakami T, Sato M and Shin S 2019 Nat. Phys. 15 41
[12] Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803
[13] Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S, Duan W and Zhou S 2017 Nat. Commun. 8 257
[14] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413
[15] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603
[16] Yang L X, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Rahn M, Prabhakaran D, Hussain Z, Mo S K, Felser C, Yan B and Chen Y L 2015 Nat. Phys. 11 728
[17] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
[18] Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, Zhang C, Mou D, Wu Y, Huang L, Lee C C, Huang S M, Wang B, Bansil A, Jeng H T, Neupert T, Kaminski A, Lin H, Jia S and Zahid Hasan M 2015 Nat. Phys. 11 748
[19] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[20] Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M and Li L 2013 Phys. Rev. Lett. 111 246603
[21] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[22] Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806
[23] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[24] Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J and Mao Z 2016 Phys. Rev. Lett. 117 016602
[25] Yan Z and Wang Z 2016 Phys. Rev. Lett. 117 087402
[26] Wang Z, Wieder B J, Li J, Yan B and Bernevig B A 2019 Phys. Rev. Lett. 123 186401
[27] Feng B, Fu B, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y and Matsuda I 2017 Nat. Commun. 8 1007
[28] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Il Min B, Yang B J and Kim J S 2018 Nat. Mater. 17 794
[29] Wang S S, Wu W K and Yang S Y 2019 Acta. Phys. Sin. 68 227101 (in Chinese)
[30] Bensch W, Helmer O, Muhler M, Ebert H and Knecht M 1995 J. Phys. Chem. 99 3326
[31] Salmankurt B and Duman S 2017 Philosophical Magazine 97 175
[32] Hosen M M 2018 Phys. Rev. B 97 121103(R)
[33] VanGennep D, Paul T A, Yerger C W, Weir S T, Vohra Y K and Hamlin J J 2019 Phys. Rev. B 99 085204
[34] Hu J, Zhu Y L, Graf D, Tang Z J, Liu J Y and Mao Z Q 2017 Phys. Rev. B 95 205134
[35] Chen F C, Fei Y, Li S J, Wang Q, Luo X, Yan J, Lu W J, Tong P, Song W H, Zhu X B, Zhang L, Zhou H B, Zheng F W, Zhang P, Lichtenstein A L, Katsnelson M I, Yin Y, Hao N and Sun Y P 2020 Phys. Rev. Lett. 124 236601
[36] Xu B, Zhao L X, Marsik P, Sheveleva E, Lyzwa F, Dai Y M, Chen G F, Qiu X G and Bernhard C 2018 Phys. Rev. Lett. 121 187401
[37] Lv Y Y, Zhang B B, Li X, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H and Chen Y F 2016 Appl. Phys. Lett. 108 244101
[38] Ebad Allah J, Afonso J F, Krottenmüller M, Hu J, Zhu Y L, Mao Z Q, Kuneš J and Kuntscher C A 2019 Phys. Rev. B 99 125154
[39] Yen Y and Guo G Y 2020 Phys. Rev. B 101 064430
[40] Gu C C, Hu J, Chen X L, Guo Z P, Fu B T, Zhou Y H, An C, Zhou Y, Zhang R R, Xi C Y, Gu Q Y, Park C, Shu H Y, Yang W G, Pi L, Zhang Y H, Yao Y G, Yang Z R, Zhou J H, Sun J, Mao Z Q and Tian M L 2019 Phys. Rev. B 100 205124
[41] Sankar R, Peramaiyan G, Muthuselvam I P, Butler C J, Dimitri K, Neupane M, Rao G N, Lin M T and Chou F C 2017 Sci. Rep. 7 40603
[42] Lou R, Ma J Z, Xu Q N, Fu B B, Kong L Y, Shi Y G, Richard P, Weng H M, Fang Z, Sun S S, Wang Q, Lei H C, Qian T, Ding H and Wang S C 2016 Phys. Rev. B 93 241104
[43] Krottenmüller M, Vöst M, Unglert N, Ebad-Allah J, Eickerling G, Volkmer D, Hu J, Zhu Y L, Mao Z Q, Scherer W and Kuntscher C A 2020 Phys. Rev. B 101 081108
[44] Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F, Hasan M Z and Durakiewicz T 2016 Phys. Rev. B 93 201104
[45] Orbanić F, Novak M, Glumac Z, McCollam A, Tang L and Kokanović I 2021 Phys. Rev. B 103 045122
[46] Hong G H, Wang C W, Jiang J, Chen C, Cui S T, Yang H F, Liang A J, Liu S, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Wang M X, Yang L X, Liu Z K and Chen Y L 2018 Chin. Phys. B 27 017105
[47] Singha R, Pariari A K, Satpati B and Mandal P 2017 Proc. Natl. Acad. Sci. USA 114 2468
[48] Zhou Y, Lu P, Du Y, Zhu X, Zhang G, Zhang R, Shao D, Chen X, Wang X, Tian M, Sun J, Wan X, Yang Z, Yang W, Zhang Y and Xing D 2016 Phys. Rev. Lett. 117 146402
[49] Lu P, Kim J S, Yang J, Gao H, Wu J, Shao D, Li B, Zhou D, Sun J, Akinwande D, Xing D and Lin J F 2016 Phys. Rev. B 94 224512
[50] Wu J, Feng Z, Wang J, Chen Q, Ding C, Chen T, Guo Z, Wen J, Shi Y, Xing D and Sun J 2019 Phys. Rev. B 100 060103
[51] Chen T, Gu Q, Chen Q, Wang X, Pickard C J, Needs R J, Xing D and Sun J 2020 Phys. Rev. B 101 054518
[52] Chen Y, Hu Q M and Yang R 2012 Phys. Rev. Lett. 109 157004
[53] Pal S, Arora R, Roychowdhury S, Harnagea L, Saurabh K, Shenoy S, Muthu D V S, Biswas K, Waghmare U V and Sood A K 2020 Phys. Rev. B 101 155202
[54] Ebad-Allah J, Krottenmüller M, Hu J, Zhu Y L, Mao Z Q and Kuntscher C A 2019 Phys. Rev. B 99 245133
[55] Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817
[56] Gao H, Wang J, Han Y and Sun J 2021 Fundam. Res. 1 466
[57] Wang X, Chen T, Cogollo-Olivo B H, Ding C, Huang T, Lu Q and Sun J 2021 Phys. Rev. B 104 064104
[58] Blöchl P E 1994 Phys. Rev. B 50 17953
[59] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[60] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[61] Momma K and Izumi F 2011 J. Appl. Crystal. 44 1272
[62] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[63] Hill R 1952 Proc. Phys. Soc. A 65 349
[64] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[65] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[66] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[67] Sancho M P L, Sancho J M L, Sancho J M L and Rubio J 1985 J. Phys. F: Met. Phys. 15 851
[68] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[69] Wang C and Hughbanks T 1995 Inorg. Chem. 34 5524
[70] Clarke S M, Steele B A, Kroonblawd M P, Zhang D, Kuo I F W and Stavrou E 2020 J. Phys. Chem. B 124 1
[71] Gupta S N, Singh A, Sarkar S, Muthu D V S, Sampath S, Waghmare U and Sood A K 2020 Phys. Rev. B 101 035123
[72] Yang J, Jiao Y, Han Y H and Li J 2016 Chin. Phys. Lett. 33 086201
[73] Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525
[74] McMillan W L 1968 Phys. Rev. 167 331
[75] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!