Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068103    DOI: 10.1088/1674-1056/ac4650
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature

Guang-Tong Zhou(周广通)1, Yu-Hu Mu(穆玉虎)1, Yuan-Wen Song(宋元文)1, Zhuang-Fei Zhang(张壮飞)1, Yue-Wen Zhang(张跃文)1, Wei-Xia Shen(沈维霞)1, Qian-Qian Wang(王倩倩)1, Biao Wan(万彪)1, Chao Fang(房超)1,†, Liang-Chao Chen(陈良超)1,‡, Ya-Dong Li(李亚东)2, and Xiao-Peng Jia(贾晓鹏)1
1 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China;
2 College of Electronical Information Engineering, Yangtze Normal University, Chongqing 408100, China
Abstract  The synergistic influences of boron, oxygen, and titanium on growing large single-crystal diamonds are studied using different concentrations of B2O3 in a solvent-carbon system under 5.5 GPa-5.7 GPa and 1300 ℃-1500 ℃. It is found that the boron atoms are difficult to enter into the crystal when boron and oxygen impurities are doped using B2O3 without the addition of Ti atoms. However, high boron content is achieved in the doped diamonds that were synthesized with the addition of Ti. Additionally, boron-oxygen complexes are found on the surface of the crystal, and oxygen-related impurities appear in the crystal interior when Ti atoms are added into the FeNi-C system. The results show that the introduction of Ti atoms into the synthesis cavity can effectively control the number of boron atoms and the number of oxygen atoms in the crystal. This has important scientific significance not only for understanding the synergistic influence of boron, oxygen, and titanium atoms on the growth of diamond in the earth, but also for preparing the high-concentration boron or oxygen containing semiconductor diamond technologies.
Keywords:  high pressure and high temperature (HPHT)      diamond      B2O3      Ti  
Received:  29 November 2021      Revised:  22 December 2021      Accepted manuscript online:  24 December 2021
PACS:  81.05.ug (Diamond)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  81.10.Fq (Growth from melts; zone melting and refining)  
  81.05.uf (Graphite)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804305, 12004341, 11704340, and 12004342), the Key Research Project of Higher Education Institution of Henan Province, China (Grant No. 19A140006), the Scientific and Technological Project in Henan Province, China (Grant No. 202102210198), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjmsxmX0391), and the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN201901405).
Corresponding Authors:  Chao Fang, Liang-Chao Chen     E-mail:  fangchao1989@zzu.edu.cn;chenlc@zzu.edu.cn

Cite this article: 

Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏) Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature 2022 Chin. Phys. B 31 068103

[1] Wilks J and Wilks E 1991 Butterworth-Heinemann
[2] Vorobiev Y V, Zakharchenko R V, Semenova G N, et al. 1996 Semiconducting & Semi-insulating Materials Conference, IEEE
[3] Poferl D J, Gardner N C and Angus J C 1973 J. Appl. Phys. 44 1428
[4] Li S S, Ma H A, Li X L, et al. 2011 Chin. Phys. B 20 028103
[5] Xiao H Y, Liu L N, Qin Y K, Zhang D M, Zhang Y S, Sui Y M, et al. 2016 Acta Phys. Sin. 65 070701 (in Chinese)
[6] Fang C, Zhang Y, Shen W, Sun S, Zhang Z, et al. 2017 CrystEngComm 19 5727
[7] Liu X, Chen X, Singh D J, Stern R A, Wu J, et al. 2019 Proceedings of the National Academy of Sciences 116 7703
[8] Prikhodko D, Pavlov S, Tarelkin S, Bormashov V, Kuznetsov M, et al. 2020 Phys. Rev. B 102 155204
[9] Wang Y and Kanda H 1998 Diamond and Related Mater. 7 57
[10] Strong H and Chrenko R 1971 J. Phys. Chem. 75 1838
[11] Wentorf R Jr 1971 J. Phys. Chem. 75 1833
[12] Strong H and Wentorf R 1972 Naturwissenschaften 59 1
[13] Kanda H 2000 Brazilian Journal of Physics 30 482
[14] Collins A and Woods G 1982 Philosophical Magazine B 46 77
[15] Woods G, Van Wyk J and Collins A 1990 Philosophical Magazine B 62 589
[16] Kaiser W and Bond W 1959 Phys. Rev. 115 857
[17] Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M and Ma H A 2011 Chin. Phys. B 20 078103
[18] Sumiya H and Satoh S 1996 Diamond and Related Materials 5 1359
[19] Chevallier J, Lusson A, Ballutaud D, Theys B, Jomard F, et al. 2001 Diamond and related materials 10 399
[20] Chepurov A, Yelisseyev A, Zhimulev E, Sonin V, Fedorov I and Chepurov A 2008 Inorganic Materials 44 377
[21] Inushima T, Mamin R F and Shiomi H 2009 Phys. Rev. B 79 045210
[22] D'Haenens-Johansson U F, Katrusha A, Johnson P and Wang W 2015 Gems & Gemology 51 260
[23] Chrenko R 1973 Phys. Rev. B 7 4560
[24] Chen L, Miao X, He X, Guo L, Fang S, et al. 2018 J. Cryst. Growth 498 67
[25] Chepugov A, Ivakhnenko S and Garashchenko V 2014 Physica Status Solidi (c) 11 1431
[26] Mortet V, Pernot J, Jomard F, Soltani A, Remes Z, et al. 2015 Diamond and Related Materials 53 29
[27] Wagner J, Wild C and Koidl P 1991 Appl. Phys. Lett. 59 779
[28] Etou Y, Tai T, Sugiyama T and Sugino T 2002 Diamond and Related Materials 11 985
[29] Lu XH, Liu W, Ouyang J and Tian Y 2014 Appl. Surf. Sci. 311 749
[30] Petit T, Pflüger M, Tolksdorf D, Xiao J and Aziz E F 2015 Nanoscale 7 2987
[31] Benndorf C, Hadenfeldt S, Luithardt W and Zhukov A 1996 Diamond and Related M 5 784
[32] Vetrone J, Fan J and Trenary M 1994 Surf. Sci. 314 315
[33] Jung C H, Lee M J and Kim C J 2004 Mater. Lett. 58 609
[34] Baba K and Hatada R 2001 Surface and Coatings Technology 136 192
[35] Bhaumik S, Divakar C, Singh A K and Upadhyaya G 2000 Mater. Sci. Eng. A 279 275
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[6] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[7] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[8] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[9] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[10] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[11] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[12] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[13] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[14] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[15] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
No Suggested Reading articles found!