Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097802    DOI: 10.1088/1674-1056/ac4909

Gamma induced changes in Makrofol/CdSe nanocomposite films

Ali A. Alhazime1, M. ME. Barakat2,3, Radiyah A. Bahareth4, E. M. Mahrous1, Saad Aldawood5, S. Abd El Aal6,7, and S. A. Nouh1,8,†
1 Physics Department, Faculty of Science, Taibah University, Medina, Saudi Arabia;
2 Department of Physics, Faculty of Science, Taibah University, Yanbu, Saudi Arabia;
3 Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt;
4 Physics Department, College of Science, Jeddah University, Jeddah, Saudi Arabia;
5 Department of Physics and Astronomy, College of Science, P. O. BOX 2455, King Saud University, Saudi Arabia;
6 Center of Radiation Research and Technology, Egyptian Atomic Authority, Nasr City, Cairo, Egypt;
7 Qassim University, P. B. 6644, Buraidah 51452, Qassim, Saudi Arabia;
8 Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
Abstract  We applied an ex-situ casting procedure to prepare a nanocomposite (NCP) from Makrofol polycarbonate (PC) and CdSe nanoparticles. The CdSe nanoparticles were prepared by a thermolysis procedure in the presence of N2 gas flow. Rietveld refinement of x-ray data illustrated that the CdSe adopts a cubic zinc blend structure of 6.057 Å lattice parameter and 2 nm typical grain size. Samples from the prepared NCP were exposed to γ dosages (20 kGy-250 kGy). The modifications induced in the NCP films owing to γ dosages have been studied. The γ irradiation (50 kGy-250 kGy) causes crosslinks that reduce the optical bandgap from 4.15 eV to 3.81 eV, associated with an increase in dielectric parameters and refractive index. This is attributed to an increase in the mass fraction of the disordered regions as specified by x-ray diffraction. The PC-CdSe NCP was found to have a reaction to color modification which makes it suitable for saleable reproduction on a printing press.
Keywords:  gamma      nanocomposite      x-ray diffraction      UV spectra      color changes  
Received:  06 December 2021      Revised:  04 January 2022      Accepted manuscript online:  07 January 2022
PACS:  78.66.-w (Optical properties of specific thin films)  
  78.67.Sc (Nanoaggregates; nanocomposites)  
  62.23.Pq (Composites (nanosystems embedded in a larger structure))  
Fund: Researchers Supporting Project Number (RSP-2021/328), King Saud University, Riyadh, Saudi Arabia.
Corresponding Authors:  S. A. Nouh     E-mail:

Cite this article: 

Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh Gamma induced changes in Makrofol/CdSe nanocomposite films 2022 Chin. Phys. B 31 097802

[1] Kamal K, Nitendra G, Singh P and Meera R 2012 J. Phys. Conf. Ser. 365 012014
[2] Teresa J B, Amy A C and Stephen R L 2012 Chem. Phys. Lett. 521 7
[3] Khanna P K, More P, Bharate B G and Vishwanath A K 2010 J. Lumin. 130 18
[4] Yuan Y, Riehle F S, Nitschke R and Krüger M 2012 Mater. Sci. Eng. B. 177 245
[5] Alhazime A A, Elshamy N T, Benthami K, Barakat M M E and Nouh S A 2021 J. Polym. Eng. 41 119
[6] Park J H, Park S I, Kim T H and Park O O 2007 Thin Solid Films 515 3085
[7] Nouh S A, Benthami K and Barakat M ME 2020 Radiat. Eff. Defects Solids 175 41
[8] Bahareth R A, Barakat M ME, Alhodaib A, Aldawood S and Nouh S A 2021 Eur. Phys. J. Appl. Phys. 94 20402
[9] Chetna T and Ambika S 2016 AIP Conf. Proc. 1728 020151
[10] Al Naim A, Alnaim N, Ibrahim S S and Metwally S M 2017 J. Radiat. Res. Appl. Sci. 10 165
[11] Mammadov S M, Khankishiyeva R F, Ramazanov M A, Akbarov O H, Akbarov E O and Akhundzada H N 2017 Am. J. Polymer Sci. 7 23
[12] Silindir M and Özer Y 2012 PDA J. Pharm. Sci. Technol. 66 184
[13] Nouh S A, Radwan Y E, El fiky D, Abutalib M M, Bahareth R A, Hegazy T M and Fouad S S 2014 Radiat. Phys. Chem. 97 68
[14] Fahim E, Bekhit M, Sobhy A and Ali Z I 2020 Radiochimica Acta 108 231
[15] Sudha A, Maity T K, Sharma S L and Gupta A N 2019 Nucl. Instrum. Methods Phys. Res. B 461 171
[16] Abdullahi S, Aydarous A and Salah N 2021 Radiat. Phys. Chem. 188 109656
[17] Hossam M, Ali Z and Hussein E 2006 J. Appl. Polym. Sci. 101 4358
[18] Parak W J, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams C S, Boudreau R, Le Gros M A, Larabell C A and Alivisatos A P 2003 Nanotechnology 14 R15
[19] Mthethwa T P, Moloto M J, de Vries A and Matabola K P 2011 Mater. Res. Bull. 46 569
[20] Dzhardimalieva G I and Uflyand I E 2017 RSC Adv. 7 42242
[21] Shamraiz U, Hussain R A and Badshah A 2016 J. Solid State Chem. 238 25
[22] Cao Y, Mao S, Li M, Chen Y and Wang Y 2017 ACS Catal. 7 8090
[23] Nouh S A, Abou Elfadl A, Benthami K and Alhazime A A 2019 Int. Polym. Process. 34 255
[24] Abedi S and Abdouss M 2014 Appl. Catal. A Gen. 475 386
[25] Nouh S A, Benthami K, Abou Elfadl A, ElShamy N T and Tommalieh M J 2021 Polymer Bulletin 78 1851
[26] Aeshah S, Elias S, Naif M, Halimah M K, Abdul H S, Che A C and Shahidan R 2017 Results Phys. 7 1556
[27] Nouh S A, Benthami K, Massoud A M and El-Shamy N T 2018 Radiat. Eff. Defects Solids 173 956
[28] Nouh S A, Gaballah N, Abou Elfadl A and Alsharif S A 2019 Radiat. Protect. Dosim. 183 450
[29] Heiba Z K, Mohamed MB and Imam N G 2018 Int. Polymer Process. 33 226
[30] Mai M ME, Tommalieh M J, Mahrous E M, Aldawood S and Nouh S A 2022 J. Laser Appl., in press
[31] Nouh S A, Benthami K, Samy R M and El-Hagg A A 2020 Chem. Phys. Lett. 741 137123
[32] El-Mesady I A, Rammah Y S, Abdalla A M and Ghanim E H 2020 Radiat. Phys. Chem. 168 108578
[33] Rammah Y S, Ibrahim S E and Awad E M 2019 Bull. Natl. Res. Cent. 43 32
[34] Aziz S B, Abdullah O G, Hussein A M, Abdulwahid R T, Rasheed M A, Ahmed H M, Abdalqadir S W and Mohammed A R 2017 J. Mater. Sci. Mater. Electron. 28 7473
[35] Gupta S K, Singh P, Kumar R and Kumar S 2015 Adv. Polym. Technol. 34 1
[36] Ibrahim HA, Abo Badr K and Mahdy T 2014 Curr. Sci. Int. 3 390
[37] Alhazime A A, Benthami K A, Alsobhi B O, Ali G W and Nouh S A 2021 J. Vinyl Addit. Technol. 27 47
[38] Tauc J 1972 In Optical Properties of Solids (Abeles F. Ed.; North-Holland Publ:Amsterdam, New York) p. 77
[39] Aziz S B, Abdullah O G, Hussein A M and Ahmed H M 2017 Polymers 9 626
[40] Patel A K, Pandey K, Agrawal S, Pandey N and Bajpai R 2019 AIP Conf. Proc. 2100 020150
[41] Aziz S B, Abdullah O G, Hussein A M, Abdulwahid R T, Rasheed M A, Ahmed H M, Abdalqadir S W and Mohammed A R 2017 J. Mater. Sci. Mater. Electron. 28 7473
[42] Urbach F 1953 Phys. Rev. 92 1324
[43] Wahab L A, Zayed H A and Abd El-Galil A A 2012 Thin Solid Films 520 5195
[44] Prasher S, Kumar M and Singh S 2014 Int. J. Polym. Anal. Charact. 19 204
[45] Elkhoshkhany N, Abbas R, El-Mallawany R and Fraih A 2014 J. Ceram. Int. 40 14477
[46] Shams-Eldin M A, Wochnowski C, Koerdt M, Metev S, Hamza A A and Juptner W 2005 Opt. Mater. 27 1138
[47] Ranby B and Rebek J 1996 In Photodegradation, Photooxidation and Photostabilization of Polymers:Principles and Applications (J.F. Rabek, Ed.; Wiley:London) p. 153
[48] Soylu M, Al-Ghamdi A A and Yakuphanoglu F 2015 J. Phys. Chem. Solids 85 26
[49] Bhavsar V and Tripathi D 2016 Indian J. Pure Appl. Phys. 54 105
[50] Brza M A, Aziz S B, Anuar H and Al Hazza M H 2019 Int. J. Mol. Sci. 20 3910
[51] Nassau K 1998 Color for Science, Art and Technology (Elsevier:New York)
[52] Witzel R F, Burnham R W and Onley J W 1973 J. Opt. Soc. Am. 63 615
[53] Wyszecki G and Fielder G H 1971 J. Opt. Soc. Am. 61 1135
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[3] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[4] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[5] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[6] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[7] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[8] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[9] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[10] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[11] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[12] Analytical solution of crystal diffraction intensity
Wan-Li Shang(尚万里), Ao Sun(孙奥), Hua-Bin Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Xu-Fei Xie(谢旭飞), Xing-Sen Che(车兴森), Li-Fei Hou(侯立飞), Wen-Hai Zhang(张文海), Miao Li(黎淼), Jun Shi(施军), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2021, 30(11): 116101.
[13] Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3
Zhongxu Li(李忠旭), Kai Huang(黄凯), Yanda Ji(吉彦达), Yang Chen(陈阳), Xiaomeng Zhao(赵晓蒙), Min Zhou(周民), Tiangui You(游天桂), Shibin Zhang(张师斌), and Xin Ou(欧欣). Chin. Phys. B, 2021, 30(10): 106103.
[14] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[15] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
No Suggested Reading articles found!