INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of temperature on photoresponse properties of solar-blind Schottky barrier diode photodetector based on single crystal Ga2O3 |
Chao Yang(杨超)1, Hongwei Liang(梁红伟)1, Zhenzhong Zhang(张振中)2, Xiaochuan Xia(夏晓川)1, Heqiu Zhang(张贺秋)1, Rensheng Shen(申人升)1, Yingmin Luo(骆英民)1, Guotong Du(杜国同)1 |
1 School of Microelectronics, Dalian University of Technology, Dalian 116024, China;
2 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
|
|
Abstract A solar-blind photodetector is fabricated on single crystal Ga2O3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet (UV) transmittance. The quantum efficiency is about 400% at 42 V. The Ga2O3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible (=3213) and solar-blind/UV (=834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature (RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.
|
Received: 20 November 2018
Revised: 05 January 2019
Accepted manuscript online:
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
95.85.Mt
|
(Ultraviolet (10-300 nm))
|
|
85.30.Kk
|
(Junction diodes)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
Fund: Project supported by National Key Research and Development Plan of China (Grant Nos. 2016YFB0400600 and 2016YFB0400601), the National Natural Science Foundation of China (Grant Nos. 61574026, 11675198, 61774072, and 11405017), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 201602453 and 201602176), China Postdoctoral Science Foundation Funded Project (Grant No. 2016M591434), and the Dalian Science and Technology Innovation Fund (Grant No. 2018J12GX060). |
Corresponding Authors:
Hongwei Liang
E-mail: hwliang@dlut.edu.cn
|
Cite this article:
Chao Yang(杨超), Hongwei Liang(梁红伟), Zhenzhong Zhang(张振中), Xiaochuan Xia(夏晓川), Heqiu Zhang(张贺秋), Rensheng Shen(申人升), Yingmin Luo(骆英民), Guotong Du(杜国同) Effect of temperature on photoresponse properties of solar-blind Schottky barrier diode photodetector based on single crystal Ga2O3 2019 Chin. Phys. B 28 048502
|
[1] |
Sang L, Liao M and Sumiya M 2013 Sensors 13 10482
|
[2] |
Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
|
[3] |
Razeghi M 2002 Proc. IEEE 90 1006
|
[4] |
Monroy E, Omnés F and Calle F 2003 Semicond. Sci. Technol. 18 R33
|
[5] |
Xu Z Y and Sadler B M 2008 IEEE Commun. Mag. 46 67
|
[6] |
Li J, Zhou Y, Yi X, Zhang M, Chen X, Cui M and Yan F 2017 Curr. Opt. Photon. 1 196
|
[7] |
Walker D, Kumar V, Mi K, Sandvik P, Kung P, Zhang X H and Razeghi M 2000 Appl. Phys. Lett. 76 403
|
[8] |
Tut T, Gokkavas M, Inal A and Ozbay E 2007 Appl. Phys. Lett. 90 163506
|
[9] |
Parish G, Keller S, Kozodoy P, Ibbetson J P, March, H, Fini P T, Fleischer S B, DenBaars S P, Mishra U K and Tarsa E J 1999 Appl. Phys. Lett. 75 247
|
[10] |
Fan M M, Liu K W, Chen X, Wang X, Zhang Z Z, Li B H and Shen D Z 2015 ACS Appl. Mater. Interfaces 7 20600
|
[11] |
Wang L K, Ju Z G, Zhang J Y, Zheng J, Shen D Z, Yao B, Zhao D X, Zhang Z Z, Li B H and Shan C X 2009 Appl. Phys. Lett. 95 131113
|
[12] |
Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D and Fang X 2017 Adv. Funct. Mater. 27 1700264
|
[13] |
Zhao B, Wang F, Chen H, Wang Y, Jiang M, Fang X and Zhao D 2015 Nano Lett. 15 3988
|
[14] |
Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727
|
[15] |
El-Shimy M A and Hranilovic S 2015 J. Lightwave Technol. 33 2246
|
[16] |
Ueda N, Hosono H, Waseda R and Kawazoe H 1997 Appl. Phys. Lett. 70 3561
|
[17] |
Aida H, Nishiguchi K, Takeda H, Aota N, Sunakawa K and Yaguchi Y 2008 Jpn. J. Appl. Phys. 47 8506
|
[18] |
Tomm Y, Reiche P, Klimm D and Fukuda T 2000 J. Crystal Growth 220 510
|
[19] |
Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R and Fornari R 2012 Appl. Phys. Lett. 101 132106
|
[20] |
Splith D, Muller S, Schmidt F, von Wenckstern H, van Rensburg J J, Meyer W E and Grundmann M 2014 Phys. Status Solidi A 211 40
|
[21] |
Sze S M and Ng K K 2007 Phys. Semiconductor Devices, 3rd edn. (Hoboken: John Wiley & Sons) pp. 165, 154-158, 681
|
[22] |
Rhoderick E H and Williams R H 1988 Metal-semiconductor Contacts, 2nd edn. (Oxford: Clarendon) p. 99
|
[23] |
Schroder D K 2006 Semicond. Material Device Characterization, 3rd edn. (Hoboken: John Wiley & Sons) p. 190
|
[24] |
Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 IEEE Electron Dev. Lett. 34 493
|
[25] |
He H, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rérat M 2006 Phys. Rev. B 74 195123
|
[26] |
Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
|
[27] |
Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express 23 13554
|
[28] |
Chen X, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S, Zhang R, Zheng Y and Ye J 2017 ACS Appl. Mater. Interfaces 9 36997
|
[29] |
Mahmoud W E 2016 Sol. Energy Mater. Sol. Cells 152 65
|
[30] |
Oshima T, Okuno T, Arai N, Suzuki N, Hino H and Fujita S 2009 Jpn. J. Appl. Phys. 48 011605
|
[31] |
Suzuki R, Nakagomi S, Kokubun Y, Arai N and Ohira S 2009 Appl. Phys. Lett. 94 222102
|
[32] |
Mu W X, Jia Z T, Yin Y R, Hu Q Q, Zhang J, Feng Q, Hao Y and Tao X T 2017 Crystengcomm 19 5122
|
[33] |
Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2016 Appl. Phys. Lett. 108 133503
|
[34] |
Jayawardena A, Ahyi A C and Dhar S 2016 Semicond. Sci. Technol. 31 115002
|
[35] |
Xie F, Lu H, Chen D, Ji X, Yan F, Zhang R, Zheng Y, Li L and Zhou J 2012 IEEE Sens. J. 12 2086
|
[36] |
Li G, Zhang J and Hou X 2014 Sens. Actuator A-Phys. 209 149
|
[37] |
Reemts J and Kittel A 2007 J. Appl. Phys. 101 013709
|
[38] |
Liu N, Fang G, Zeng W, Zhou H, Cheng F, Zheng Q, Yuan L, Zou X and Zhao X 2010 ACS Appl. Mater. Interfaces 2 1973
|
[39] |
Juan Y M, Chang S J, Hsueh H T, Wang S H, Weng W Y, Cheng T C and Wu C L 2015 RSC Adv. 5 84776
|
[40] |
Rafique S, Han L and Zhao H 2017 Phys. Status Solidi A 214 1700063
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|