Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 048503    DOI: 10.1088/1674-1056/28/4/048503
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Ultraviolet photodetectors based on wide bandgap oxide semiconductor films

Changqi Zhou(周长祺)1,2, Qiu Ai(艾秋)1,2, Xing Chen(陈星)1, Xiaohong Gao(高晓红)1,2, Kewei Liu(刘可为)1, Dezhen Shen(申德振)1
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Ultraviolet (UV) photodetectors have attracted more and more attention due to their great potential applications in missile tracking, flame detecting, pollution monitoring, ozone layer monitoring, and so on. Owing to the special characteristics of large bandgap, solution processable, low cost, environmentally friendly, etc., wide bandgap oxide semiconductor materials, such as ZnO, ZnMgO, Ga2O3, TiO2, and NiO, have gradually become a series of star materials in the field of semiconductor UV detection. In this paper, a review is presented on the development of UV photodetectors based on wide bandgap oxide semiconductor films.

Keywords:  photodetector      ultraviolet      oxide semiconductor film  
Received:  01 January 2019      Revised:  24 February 2019      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  61.82.Fk (Semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61475153 and 61605200), the Jilin Province Young and Middle-aged Science and Technology Innovation Leaders and Team Project, China (Grant No. 20180519023JH), the 100 Talents Program of the Chinese Academy of Sciences, and the Science Fund for Excellent Young Scholars of Jilin Province, China (Grant No. 20180520173JH).

Corresponding Authors:  Xing Chen, Kewei Liu     E-mail:  chenxing@ciomp.ac.cn;liukw@ciomp.ac.cn

Cite this article: 

Changqi Zhou(周长祺), Qiu Ai(艾秋), Xing Chen(陈星), Xiaohong Gao(高晓红), Kewei Liu(刘可为), Dezhen Shen(申德振) Ultraviolet photodetectors based on wide bandgap oxide semiconductor films 2019 Chin. Phys. B 28 048503

[1] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003
[2] Aga R S, Jowhar D, Ueda A, Pan Z, Collins W E, Mu R, Singer K D and Shen J 2007 Appl. Phys. Lett. 91 232108
[3] Mendoza F, Makarov V, Weiner B R and Morell G 2015 Appl. Phys. Lett. 107 201605
[4] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
[5] Müller A, Konstantinidis G, Dragoman M, Neculoiu D, Dinescu A, Androulidaki M, Kayambaki M, Stavrinidis A, Vasilache D, Buiculescu C, Petrini I, Kostopoulos A and Dascalu D 2009 Microelectron. J. 40 319
[6] Yang W F, Zhang F, Liu Z G and Wu Z Y 2008 Mater. Sci. Semicond. Process. 11 59
[7] Pramanik P, Sen S, Singha C, Roy A S, Das A, Sen S and Bhattacharyya A 2016 J. Appl. Phys. 120 144502
[8] Lai Y Y, Lan Y P and Lu T C 2013 Light Sci. Appl. 2 e76
[9] Inamdar S I and Rajpure K Y 2014 J. Alloys Compd. 595 55
[10] Bai Z M, Yan X Q, Chen X, Zhao K, Lin P and Zhang Y 2014 Prog. Nat. Sci.: Mater. Int. 24 1
[11] Liang F X, Zhang D Y, Wang J Z, Kong W Y, Zhang Z X, Wang Y and Luo L B 2016 Opt. Express 24 25922
[12] Vikas L S, Vanaja K A, Subha P P and Jayaraj M K 2016 Sens. Actuat. A: Phys. 242 116
[13] Liu K, Sakurai M and Aono M 2010 Sensors 10 8604
[14] Hou Y, Mei Z and Du X 2014 J. Phys. D: Appl. Phys. 47 283001
[15] Yang J L, Liu K W and Shen D Z 2017 Chin. Phys. B 26 047308
[16] Zhai T Y, Fang X S, Liao M Y, Xu X J, Zeng H B, Yoshio B D and Golberg D 2009 Sensors 9 6504
[17] Tian W, Lu H and Li L 2015 Nano Res. 8 382
[18] Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T and Shen H 2002 Appl. Phys. Lett. 80 1529
[19] Auret F D, Goodman S A, Hayes M, Legodi M J, van Laarhoven H A and Look D C 2001 Appl. Phys. Lett. 79 3074
[20] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
[21] Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A and Fang X S 2015 Mater. Today 18 493
[22] Yang W, Vispute R D, Choopun S, Sharma R P, Venkatesan T and Shen H 2001 Appl. Phys. Lett. 78 2787
[23] Xie X, Zhang Z, Li B, Wang S, Jiang M, Shan C, Zhao D, Chen H and Shen D 2014 Opt. Express 22 246
[24] Hou Y N, Mei Z X, Liang H L, Ye D Q, Gu C Z and Du X L 2013 Appl. Phys. Lett. 102 153510
[25] Gold A 2010 Appl. Phys. Lett. 96 242111
[26] Xie X, Zhang Z, Li B, Wang S and Shen D 2015 Opt. Express 23 32329
[27] Hou Y, Mei Z, Liang H, Ye D, Gu C, Du X and Lu Y 2013 IEEE Trans. Electron. Dev. 60 3474
[28] Look D C 2001 Mater. Sci. Eng. B 80 383
[29] Chen H Y, Liu K W, Chen X, Zhang Z Z, Fan M M, Jiang M M, Xie X H, Zhao H F and Shen D Z 2014 J. Mater. Chem. C 2 9689
[30] Özgür Ü Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
[31] Xie X H, Zhang Z Z, Shan C X, Chen H Y and Shen D Z 2012 Appl. Phys. Lett. 101 081104
[32] Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B and Lin Z 2011 Appl. Phys. Lett. 98 221112
[33] Wang P, Zheng Q H, Tang Q, Yang Y T, Guo L X, Huang F, Song Z J and Zhang Z Y 2014 Opt. Lett. 39 375
[34] Kind H, Yan H Q, Messer B, Law M and Yang P D 2002 Adv. Mater. 14 158
[35] Chen Q, Ding H, Wu Y, Sui M, Lu W, Wang B, Su W, Cui Z and Chen L 2013 Nanoscale 5 4162
[36] Zhu Y, Liu K, Wang X, Yang J, Chen X, Xie X, Li B and Shen D 2017 J. Mater. Chem. C 5 7598
[37] Chen X, Liu K, Wang X, Li B, Zhang Z, Xie X and Shen D 2017 J. Mater. Chem. C 5 10645
[38] Coppa B J, Davis R F and Nemanich R J 2003 Appl. Phys. Lett. 82 400
[39] Azhar E A, Ye W, Helfrecht B, Chen G, Thompson L, Yu H and Dey S 2018 IEEE Trans. Electron. Dev. 65 3291
[40] Liu Q, Maogang M, Cook B, Thapa P, Ewing D, Casper M, Stramel A and Wu J 2017 Phys. Status Solidi A 214 1700176
[41] Coppa B J, Fulton C C, Kiesel S M, Davis R F, Pandarinath C, Burnette J E, Nemanich R J and Smith D J 2005 J. Appl. Phys. 97 103517
[42] Lee S H, Kim S H and Yu J S 2016 Nanoscale Res. Lett. 11 333
[43] Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y and Huang J 2012 Nat. Nanotechnol. 7 798
[44] Cuong T V, Tien H N, Luan V H, Pham V H, Chung J S, Yoo D H, Hahn S H, Koo K K, Kohl P A, Hur S H and Kim E J 2011 Phys. Status Solidi A 208 943
[45] Ko W, Lee S, Myoung N and Hong J 2016 J. Mater. Chem. C 4 142
[46] Liu M and Kim H K 2004 Appl. Phys. Lett. 84 173
[47] Angadi B, Park H C, Choi H W, Choi J W and Choi W K 2007 J. Phys. D: Appl. Phys. 40 1422
[48] Reyes P I, Ku C J, Duan Z, Xu Y, Garfunkel E and Lu Y 2012 Appl. Phys. Lett. 101 031118
[49] Rostami A, Dolatyari M, Amini E, Rasooli H, Baghban H and Miri S 2013 ChemPhysChem. 14 554
[50] Jin Z and Wang J 2014 J. Mater. Chem. C 2 1966
[51] Xu X, Shukla S, Liu Y, Yue B, Bullock J, Su L, Li Y, Javey A, Fang X and Ager J W 2018 Phys. Status Solidi RRL 12 1700381
[52] Li H, Fan C, Wu G, Chen H and Wang M 2010 J. Phys. D: Appl. Phys. 43 425101
[53] Sun L, Jiang D, Zhang G, Liu R, Duan Q, Qin J, Liang Q, Gao S, Hou J, Zhao J, Liu W and Shen X 2016 J. Appl. Phys. 119 044508
[54] Rajan A, Kaur G, Paliwal A, Yadav H K, Gupta V and Tomar M 2014 J. Phys. D: Appl. Phys. 47 425102
[55] Hwang J D, Wang F H, Kung C Y and Chan M C 2015 IEEE Trans. Nanotechnol. 14 318
[56] Tian C, Jiang D, Li B, Lin J, Zhao Y, Yuan W, Zhao J, Liang Q, Gao S, Hou J and Qin J 2014 ACS Appl. Mater. Inter. 6 2162
[57] Pei J, Jiang D, Zhao M, Duan Q, Liu R, Sun L, Guo Z, Hou J, Qin J, Li B and Zhang G 2016 Appl. Surf. Sci. 389 1056
[58] Tong C, Yun J, Kozarsky E and Anderson W A 2013 J. Electron. Mater. 42 889
[59] Li G, Song J, Zhang J and Hou X 2014 Solid State Electron. 92 47
[60] Li G, Zhang J, Chen G, Ye H, Duan X and Hou X 2016 Solid State Electron. 123 33
[61] Sun M W, Xu Z, Yin M, Lin Q F, Lu L F, Xue X Z, Zhu X F, Cui Y X, Fan Z Y, Ding Y L, Tian L, Wang H, Chen X Y and Li D D 2016 Nanoscale 8 8924
[62] Wang X, Liu K, Chen X, Li B, Jiang M, Zhang Z, Zhao H and Shen D 2017 ACS Appl. Mater. Inter. 9 5574
[63] Guo Z, Jiang D, Zhao M, Guo F, Pei J, Liu R, Sun L, Hu N and Zhang G 2016 Solid State Electron. 124 24
[64] Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X and Lu W 2015 Small 11 2392
[65] Schoenfeld W V, Wei M, Boutwell R C and Liu H 2014 Proc. SPIE 8987 89871
[66] Jiang D Y, Shan C X, Zhang J Y, Lu Y M, Yao B, Zhao D X, Zhang Z Z, Shen D Z and Yang C L 2009 J. Phys. D: Appl. Phys. 42 025106
[67] Liu K W, Shen D Z, Shan C X, Zhang J Y, Jiang D Y, Zhao Y M, Yao B and Zhao D X 2008 J. Phys. D: Appl. Phys. 41 125104
[68] Shukla G 2009 IEEE Photon. Technol. Lett. 21 887
[69] Boutwell R C, Wei M and Schoenfeld W V 2013 Appl. Phys. Lett. 103 031114
[70] Zheng Q, Huang F, Huang J, Hu Q, Chen D and Ding K 2013 CrystEngComm 15 2709
[71] Fan M M, Liu K W, Zhang Z Z, Li B H, Chen X, Zhao D X, Shan C X and Shen D Z 2014 Appl. Phys. Lett. 105 011117
[72] Fan M M, Liu K W, Chen X, Wang X, Zhang Z Z, Li B H and Shen D Z 2015 ACS Appl. Mater. Inter. 7 20600
[73] Han S, Liu S M, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Liu X K and Zhu D L 2017 J. Alloys Compd. 694 168
[74] Han S, Liu S M, Liu W J, Cao P J, Lu Y M, Zeng Y X, Jia F, Liu X K, Zhu D L and Su S C 2016 J. Phys. Chem. C 120 12568
[75] Han S, Ji X H, An Q L, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Liu X K and Zhu D L 2017 J. Mater. Chem. C 5 11472
[76] Luo W, Weng Q, Long M, Wang P, Gong F, Fang H, Luo M, Wang W, Wang Z, Zheng D, Hu W, Chen X and Lu W 2018 Nano. Lett. 18 5439
[77] Zheng D, Fang H, Wang P, Luo W, Gong F, Ho J, Chen X, Lu W, Liao L, Jianlu Wang J and Hu W 2016 Adv. Funct. Mater. 26 7690
[78] Zheng D, Wang J, Hu W, Liao L, Fang H, Guo N, Wang P, Gong F, Wang X, Fan Z, Wu X, Meng X, Chen X and Lu W 2016 Nano Lett. 16 2548
[79] Chen Y, Wang X, Wang P, Huang H, Wu G, Tian B, Hong Z, Wang Y, Sun S, Shen H, Wang J, Hu W, Sun J, Meng X and Chu J 2016 ACS Appl. Mater. Inter. 8 32083
[80] Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W and Chu J 2015 Adv. Mater. 27 6575
[81] Wang J L, Fang H H, Wang X D, Chen X S, Lu W and Hu W D 2017 Small 13 1700894
[82] Tian H, Wang X, Zhu Y, Liao L, Wang X, Wang J and Hu W 2017 Appl. Phys. Lett. 110 043505
[83] Wang P, Wang Y, Ye L, Wu M, Xie R, Wang X, Chen X, Fan Z, Wang J and Hu W 2018 Small 14 1800492
[84] Wang Y, Wang P, Zhu Y, Gao J, Gong F, Li Q, Xie R, Wu F, Wang D, Yang J, Fan Z, Wang X and Hu W 2019 Appl. Phys. Lett. 114 011103
[85] Wang J and Hu W 2017 Chin. Phys. B 26 037106
[86] Xu M, Ge L, Han M, Huang J, Xu H and Yang Z 2019 Chin. Phys. B 28 028502
[87] Suzuki R, Nakagomi S and Kokubun Y 2011 Appl. Phys. Lett. 98 131114
[88] Ji Z G, Du J, Fan J and Wang W 2006 Opt. Mater. 28 415
[89] Rafique S, Han L and Zhao H P 2017 Phys. Status Solidi A 214 1700063
[90] Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R and Droopad R 2017 J. Appl. Phys. 122 095302
[91] Orita M, Ohta H, Hirano M and Hosono H 2000 Appl. Phys. Lett. 77 4166
[92] Oshima T, Okuno T and Fujita S 2007 Jpn. J. Appl. Phys. 46 7217
[93] Weng W Y, Hsueh T J, Chang S J, Huang G J and Hsueh H T 2011 IEEE Sens. J. 11 999
[94] Wei T C, Tsai D S, Ravadgar P, Ke J J, Tsai M L, Lien D H, Huang C Y, Horng R H and He J H 2014 IEEE J. Sel. Top. Quantum Electron. 20 3802006
[95] Yu F P, Ou S L and Wuu D S 2015 Opt. Mater. Express 5 1240
[96] Wu Z H, Qian L X, Sheng T, Zhang Y Y and Liu X Z 2016 IEEE Int. Conf. Electron. Devices Solid-State Circuits 82
[97] Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L and Li Y R 2016 Opt. Mater. 51 203
[98] Cui S J, Mei Z X, Zhang Y H, Liang H L and Du X L 2017 Adv. Opt. Mater. 5 1700454
[99] Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H and Tang W H 2017 Mater. Lett. 209 558
[100] Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z P, Chen Z W and Tang W H 2017 J. Mater. Chem. C 5 10562
[101] Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F and Tang W H 2017 J. Mater. Chem. C 5 8688
[102] An Y H, Zhi Y S, Wu Z P, Cui W, Zhao X L, Guo D Y, Li P G and Tang W H 2016 Appl. Phys. A 122 1036
[103] Nakagomi S, Momo T, Takahashi S and Kokubun Y 2013 Appl. Phys. Lett. 103 072105
[104] Kokubun Y, Miura K, Endo F and Nakagomi S 2007 Appl. Phys. Lett. 90 031912
[105] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507
[106] Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express 23 13554
[107] Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H and Schoenfeld W V 2017 Phys. Status Solidi A 214 1600688
[108] Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J and Huang F 2018 J. Alloys Compd. 735 150
[109] Chen X, Liu K W, Zhang Z Z, Wang C R, Li B H, Zhao H F, Zhao D X and Shen D Z 2016 ACS Appl. Mater. Inter. 8 4185
[110] Weng W Y, Hsueh T J, Chang S J, Huang G J and Hsueh H T 2011 IEEE. Sens. J. 11 1491
[111] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136
[112] Qu Y Y, Wu Z P, Ai M L, Guo D Y, An Y H, Yang H J, Li L H and Tang W H 2016 J. Alloys Compd. 680 247
[113] Chen X H, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S L, Zhang R, Zheng Y D and Ye J D 2017 ACS Appl. Mater. Inter. 9 36997
[114] Zou J, Zhang Q, Huang K and Marzari N 2010 J. Phys. Chem. C 114 10725
[115] Xue H L, Kong X Z, Liu Z R, Liu C X, Zhou J R and Chen W Y 2007 Appl. Phys. Lett. 90 201118
[116] Kong X Z, Liu C X, Dong W, Zhang X D, Tao C, Shen L, Zhou J R, Fei Y F and Ruan S P 2009 Appl. Phys. Lett. 94 123502
[117] Shih W S, Young S J, Ji L W, Water W, Meen T H and Shiu 2011 IEEE Sens. J. 11 3031
[118] Akbari M K, Hai Z Y, Depuydt S, Kats E, Hu J and Zhuiykov S 2017 IEEE. Trans. Nanotechnol. 16 880
[119] Patel D B, Chauhan K R, Park W H, Kim H S, Kim J and Yun J H 2017 Mat. Sci. Semicon. Proc. 61 45
[120] Zhang M, Zhang H F, Lv K B, Chen W Y, Zhou J R, Shen L and Ruan S P 2012 Opt. Express 20 5936
[121] Zhang D Z, Liu C Y, Xu R L, Yin B, Chen Y, Zhang X D, Gao F L and Ruan S P 2017 Nanotechnology 28 365505
[122] Sun L, Wang C R, Ji T, Wang J L, Yi G C and Chen X S 2017 RSC Adv. 7 51744
[123] Liu Z C, Ao J P, Li F N, Wang W, Wang J J, Zhang J W and Wang H X 2017 Mater. Lett. 188 52
[124] Hakim A, Hossain J and Khan K 2009 Renew. Energ. 34 2625
[125] Al-Ghamdi A A, Abdel-wahab M S, Farghali A A and Hasan P M Z 2016 Mater. Res. Bull. 75 71
[126] Ahmed A A, Afzal N, Devarajan M and Subramani S 2016 Mater. Res. Express 3 116405
[127] Caruge J M, Halpert J E, Wood V, Bulovic V and Bawendi M G 2008 Nat. Photon. 2 247
[128] Waser R and Aono M 2007 Nat. Mater. 6 833
[129] Gibson E A, Smeigh A L, Pleux L L, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A and Hammarstrom L 2009 Angew. Chem. Int. Ed. 121 4466
[130] Mallows J, Planells M, Thakare V, Bhosale R, Ogale S and Robertson N 2015 ACS Appl. Mater. Inter. 7 27597
[131] Park N, Sun K, Sun Z L, Jing Y and Wang D L 2013 J. Mater. Chem. C. 1 7333
[132] Kim D Y, Ryu J, Manders J, Lee J and So F 2014 ACS Appl. Mater. Inter. 6 1370
[133] Kim H, Kumar M D, Patel M and Kim J 2016 Mater. Res. Bull. 83 35
[134] Zhao Y M, Zhang J Y, Jiang D Y, Shan C X, Zhang Z Z, Yao B, Zhao D X and Shen D Z 2009 J. Phys. D: Appl. Phys. 42 092007
[135] Ahmed A A, Devarajan M and Afzal N 2017 Sens. Actuat. A: Phys. 262 78
[136] Choi J M and Im S 2005 Appl. Surf. Sci. 244 435
[137] Zhang D Y, Nozaki S J and Uchida K 2014 J. Vac. Sci. Technol. B 32 031202
[138] Li H K, Chen T P, Hu S G, Li X D, Liu Y, Lee P S, Wang X P, Li H Y and Lo G Q 2015 Opt. Express 23 27683
[139] Tsai S Y, Hon M H and Lu Y M 2011 Mater. Sci. Forum 687 711
[140] Patel M and Kim J 2017 J. Alloys Compd. 729 796
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[4] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[5] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[6] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[7] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[8] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[9] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[10] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[11] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[12] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[13] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[14] Yield enhancement of elliptical high harmonics driven by bicircular laser pulses
Xiaofan Zhang(张晓凡) and Xiaosong Zhu(祝晓松). Chin. Phys. B, 2022, 31(11): 114209.
[15] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
No Suggested Reading articles found!