CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Optoelectronic properties of bottom gate-defined in-plane monolayer WSe2 p-n junction |
Di Liu(刘頔)1,2, Xiao-Zhuo Qi(祁晓卓)1,2, Kuei-Lin Chiu(邱奎霖)1,2, Takashi Taniguchi3, Xi-Feng Ren(任希锋)1,2, Guo-Ping Guo(郭国平)1,2 |
1 Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China;
2 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan |
|
|
Abstract Monolayer transition-metal dichalcogenides (TMDs) are considered to be fantastic building blocks for a wide variety of optical and optoelectronic devices such as sensors, photodetectors, and quantum emitters, owing to their direct band gap, transparency, and mechanical flexibility. The core element of many conventional electronic and optoelectronic devices is the p-n junction, in which the p- and n-types of the semiconductor are formed by chemical doping in different regions. Here, we report a series of optoelectronic studies on a monolayer WSe2 in-plane p-n photodetector, demonstrating a low-power dissipation by showing an ambipolar behavior with a reduced threshold voltage by a factor of two compared with the previous results on a lateral electrostatically doped WSe2 p-n junction. The fabrication of the device is based on a polycarbonates (PC) transfer technique and hence no electron-beam exposure induced damage to the monolayer WSe2 is expected. Upon optical excitation, the photodetector demonstrates a photoresponsivity of 0.12 mA·W-1 and a maximum external quantum efficiency of 0.03%. Our study provides an alternative platform for a flexible and transparent two-dimensional photodetector, from which we expect to further promote the development of next-generation optoelectronic devices.
|
Received: 10 March 2018
Revised: 11 May 2018
Accepted manuscript online:
|
PACS:
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grant Nos. 61590932, 11774333, 61674132, 11674300, 11575172, and 11625419), the Anhui Provincial Initiative in Quantum Information Technologies, China (Grant Nos. AHY080000 and AHY130300), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030601), and the Fundamental Research Funds for the Central Universities, China. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. |
Corresponding Authors:
Xi-Feng Ren, Guo-Ping Guo
E-mail: renxf@ustc.edu.cn;gpguo@ustc.edu.cn
|
Cite this article:
Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Kuei-Lin Chiu(邱奎霖), Takashi Taniguchi, Xi-Feng Ren(任希锋), Guo-Ping Guo(郭国平) Optoelectronic properties of bottom gate-defined in-plane monolayer WSe2 p-n junction 2018 Chin. Phys. B 27 087303
|
[1] |
He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X, Lu C Y and Pan J W 2015 Nat. Nanotechnol. 10 497
|
[2] |
Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2016 Nat. Nanotechnol. 11 37
|
[3] |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
|
[4] |
Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
|
[5] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti I V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[6] |
Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
|
[7] |
Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
|
[8] |
Britnell L, Ribeiro R, Eckmann A, Jalil R, Belle B, Mishchenko A, Kim Y J, Gorbachev R, Georgiou T and Morozov S 2013 Science 340 1311
|
[9] |
Baugher B W, Churchill H O, Yang Y and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262
|
[10] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[11] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[12] |
Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, BanerjeeS K and Colombo L 2014 Nat. Nanotechnol. 9 768
|
[13] |
Song X X, Liu D, Mosallanejad V, You J, Han T Y, Chen D T, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2015 Nanoscale 7 16867
|
[14] |
Song X X, Zhang Z Z, You J, Liu D, Li H O, Cao G, Xiao M and Guo G P 2015 Sci. Rep. 5 16113
|
[15] |
Liu D, Yu L, Xiong X, Yang L, Li Y, Li M, Li H O, Cao G, Xiao M, Xiang B, Min C J, Guo G C, Ren X F and Guo G P 2016 Opt. Express 24 27554
|
[16] |
Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
|
[17] |
Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J and Heinz T F 2014 Phys. Rev. B 90 205422
|
[18] |
Funke S, Miller B, Parzinger E, Thiesen P, Holleitner A W and Wurstbauer U 2016 J. Phys.: Condens. Matter 28 385301
|
[19] |
Chuang H J, Tan X, Ghimire N J, Perera M M, Chamlagain B, Cheng M C, Yan J, Mandrus D, Tománek D and Zhou Z 2014 Nano Lett. 14 3594
|
[20] |
Fang H, Chuang S, Chang T C, Takei K, Takahashi T and Javey A 2012 Nano Lett. 12 3788
|
[21] |
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
|
[22] |
Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
|
[23] |
Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotech. 9 257
|
[24] |
Mak K F and Shan J 2016 Nat. Photon. 10 216
|
[25] |
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
|
[26] |
Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and DeanC R 2013 Science 342 614
|
[27] |
Kang J, Lee S and Choi B 2016 Jpn. J. Appl. Phys. 55 111301
|
[28] |
Puster M, Rodríguez-Manzo J A, Balan A and Drndic M 2013 ACS Nano 7 11283
|
[29] |
Sun M, Xie D, Sun Y, LiWand Ren T 2017 Nanotechnology 29 015203
|
[30] |
Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, KitamuraK, Yao W, Cobden D H and Xu X 2014 Nat. Nanotechnol. 9 268
|
[31] |
ZhaoW, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H and Eda G 2013 Nanoscale 5 9677
|
[32] |
He K, Kumar N, Zhao L, Wang Z, Mak K F, Zhao H and Shan J 2014 Phys. Rev. Lett. 113 026803
|
[33] |
Allain A and Kis A 2014 ACS Nano 8 7180
|
[34] |
Zhou X, Zhou N, Li C, Song H, Zhang Q, Hu X, Gan L, Li H, Lu J and Luo J 2017 2$D Mater. 4 025048
|
[35] |
Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J and Li L J 2013 Adv. Mater. 25 3456
|
[36] |
Furchi M M, Pospischil A, Libisch F, Burgdörfer J and Mueller T 2014 Nano Lett. 14 4785
|
[37] |
Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y and Duan X 2014 Nano Lett. 14 5590
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|