Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 087303    DOI: 10.1088/1674-1056/27/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optoelectronic properties of bottom gate-defined in-plane monolayer WSe2 p-n junction

Di Liu(刘頔)1,2, Xiao-Zhuo Qi(祁晓卓)1,2, Kuei-Lin Chiu(邱奎霖)1,2, Takashi Taniguchi3, Xi-Feng Ren(任希锋)1,2, Guo-Ping Guo(郭国平)1,2
1 Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China;
2 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 National Institute for Materials Science, Namiki 1-1, Ibaraki 305-0044, Japan
Abstract  

Monolayer transition-metal dichalcogenides (TMDs) are considered to be fantastic building blocks for a wide variety of optical and optoelectronic devices such as sensors, photodetectors, and quantum emitters, owing to their direct band gap, transparency, and mechanical flexibility. The core element of many conventional electronic and optoelectronic devices is the p-n junction, in which the p- and n-types of the semiconductor are formed by chemical doping in different regions. Here, we report a series of optoelectronic studies on a monolayer WSe2 in-plane p-n photodetector, demonstrating a low-power dissipation by showing an ambipolar behavior with a reduced threshold voltage by a factor of two compared with the previous results on a lateral electrostatically doped WSe2 p-n junction. The fabrication of the device is based on a polycarbonates (PC) transfer technique and hence no electron-beam exposure induced damage to the monolayer WSe2 is expected. Upon optical excitation, the photodetector demonstrates a photoresponsivity of 0.12 mA·W-1 and a maximum external quantum efficiency of 0.03%. Our study provides an alternative platform for a flexible and transparent two-dimensional photodetector, from which we expect to further promote the development of next-generation optoelectronic devices.

Keywords:  WSe2      photodetector      transfer technique      p-n junction  
Received:  10 March 2018      Revised:  11 May 2018      Accepted manuscript online: 
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grant Nos. 61590932, 11774333, 61674132, 11674300, 11575172, and 11625419), the Anhui Provincial Initiative in Quantum Information Technologies, China (Grant Nos. AHY080000 and AHY130300), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030601), and the Fundamental Research Funds for the Central Universities, China. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Corresponding Authors:  Xi-Feng Ren, Guo-Ping Guo     E-mail:  renxf@ustc.edu.cn;gpguo@ustc.edu.cn

Cite this article: 

Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Kuei-Lin Chiu(邱奎霖), Takashi Taniguchi, Xi-Feng Ren(任希锋), Guo-Ping Guo(郭国平) Optoelectronic properties of bottom gate-defined in-plane monolayer WSe2 p-n junction 2018 Chin. Phys. B 27 087303

[1] He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X, Lu C Y and Pan J W 2015 Nat. Nanotechnol. 10 497
[2] Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2016 Nat. Nanotechnol. 11 37
[3] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[4] Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
[5] Radisavljevic B, Radenovic A, Brivio J, Giacometti I V and Kis A 2011 Nat. Nanotechnol. 6 147
[6] Koppens F H L, Mueller T, Avouris P, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780
[7] Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[8] Britnell L, Ribeiro R, Eckmann A, Jalil R, Belle B, Mishchenko A, Kim Y J, Gorbachev R, Georgiou T and Morozov S 2013 Science 340 1311
[9] Baugher B W, Churchill H O, Yang Y and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262
[10] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[11] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[12] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, BanerjeeS K and Colombo L 2014 Nat. Nanotechnol. 9 768
[13] Song X X, Liu D, Mosallanejad V, You J, Han T Y, Chen D T, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2015 Nanoscale 7 16867
[14] Song X X, Zhang Z Z, You J, Liu D, Li H O, Cao G, Xiao M and Guo G P 2015 Sci. Rep. 5 16113
[15] Liu D, Yu L, Xiong X, Yang L, Li Y, Li M, Li H O, Cao G, Xiao M, Xiang B, Min C J, Guo G C, Ren X F and Guo G P 2016 Opt. Express 24 27554
[16] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
[17] Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J and Heinz T F 2014 Phys. Rev. B 90 205422
[18] Funke S, Miller B, Parzinger E, Thiesen P, Holleitner A W and Wurstbauer U 2016 J. Phys.: Condens. Matter 28 385301
[19] Chuang H J, Tan X, Ghimire N J, Perera M M, Chamlagain B, Cheng M C, Yan J, Mandrus D, Tománek D and Zhou Z 2014 Nano Lett. 14 3594
[20] Fang H, Chuang S, Chang T C, Takei K, Takahashi T and Javey A 2012 Nano Lett. 12 3788
[21] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[22] Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[23] Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotech. 9 257
[24] Mak K F and Shan J 2016 Nat. Photon. 10 216
[25] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[26] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and DeanC R 2013 Science 342 614
[27] Kang J, Lee S and Choi B 2016 Jpn. J. Appl. Phys. 55 111301
[28] Puster M, Rodríguez-Manzo J A, Balan A and Drndic M 2013 ACS Nano 7 11283
[29] Sun M, Xie D, Sun Y, LiWand Ren T 2017 Nanotechnology 29 015203
[30] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, KitamuraK, Yao W, Cobden D H and Xu X 2014 Nat. Nanotechnol. 9 268
[31] ZhaoW, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H and Eda G 2013 Nanoscale 5 9677
[32] He K, Kumar N, Zhao L, Wang Z, Mak K F, Zhao H and Shan J 2014 Phys. Rev. Lett. 113 026803
[33] Allain A and Kis A 2014 ACS Nano 8 7180
[34] Zhou X, Zhou N, Li C, Song H, Zhang Q, Hu X, Gan L, Li H, Lu J and Luo J 2017 2$D Mater. 4 025048
[35] Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J and Li L J 2013 Adv. Mater. 25 3456
[36] Furchi M M, Pospischil A, Libisch F, Burgdörfer J and Mueller T 2014 Nano Lett. 14 4785
[37] Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y and Duan X 2014 Nano Lett. 14 5590
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[3] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[4] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[5] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[6] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[9] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[10] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[11] Enhanced absorption process in the thin active region of GaAs based p-i-n structure
Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097803.
[12] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[13] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[14] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[15] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
No Suggested Reading articles found!