CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection |
Xin Ye(叶鑫)2, Xiao-Chuan Xia(夏晓川)1, Hong-Wei Liang(梁红伟)1, Zhuo Li(李卓)2, He-Qiu Zhang(张贺秋)1, Guo-Tong Du(杜国同)2, Xing-Zhu Cui(崔兴柱)3, Xiao-Hua Liang(梁晓华)3,4 |
1 School of Microelectronics, Dalian University of Technology, Dalian 116024, China; 2 School of Physics, Dalian University of Technology, Dalian 116024, China; 3 Institute of High Energy Physics, Chinese Academy of Sciences(CAS), Beijing 100049, China; 4 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700℃ to investigate the effects of thermal stability of the Schottky contact on the structural and electrical properties of the detectors. At the annealing temperature of 500℃, the two nickel silicides (i.e., Ni31Si12 and Ni2Si) are formed at the interface and result in the formation of an inhomogeneous Schottky barrier. By increasing the annealing temperature, the Ni31Si12 transforms into the more stable Ni2Si. The structural evolution of the Schottky contact directly affects the electrical properties and alpha particle energy resolutions of the detectors. A better energy resolution of 2.60% is obtained for 5.48-MeV alpha particles with the detector after being annealed at 600℃. As a result, the Au/Ni/n-type 4H-SiC Schottky detector shows a good performance after thermal treatment at temperatures up to 700℃.
|
Received: 12 April 2018
Revised: 16 May 2018
Accepted manuscript online:
|
PACS:
|
73.40.Sx
|
(Metal-semiconductor-metal structures)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
29.40.Wk
|
(Solid-state detectors)
|
|
29.30.Ep
|
(Charged-particle spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675198, 61574026, and 11405017), the National Key Research and Development Program of China (Grant Nos. 2016YFB0400600 and 2016YFB0400601), the Natural Science Foundation of Liaoning Province of China (Grant Nos. 201602453 and 201602176), and the China Postdoctoral Science Foundation (Grant No. 2016M591434). |
Corresponding Authors:
Hong-Wei Liang
E-mail: hwliang@dlut.edu.cn
|
Cite this article:
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华) Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection 2018 Chin. Phys. B 27 087304
|
[1] |
Chaudhuri S K, Krishna R M, Zavalla K J, Mandal K C 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214
|
[2] |
Cheng Y, Zhao G J, Liu Y H, Sun Y J, Wang T and Chen Z Z 2015 Chin. Phys. B 24 107303
|
[3] |
Wesch W 1996 Nucl. Instrum. Methods Phys. Res. Sect. B 116 305
|
[4] |
Wang Z, Liu W, Wang C 2016 J. Electron. Mater. 45 267
|
[5] |
Raja P V, Akhtar J, Rao C V S, Vala S, Abhangi M, Murty N N 2017 Nucl. Instrum. Methods Phys. Res. Sect. A 869 118
|
[6] |
Marinova T, Kakanakova-Georgieva A, Krastev V, Kakanakov R, Neshev M, Kassamakova L, Noblanc O, Arnodo C, Cassette S, Brylinski C, Pecz B, Radnoczi and Vincze G 1997 Mater. Sci. Eng. B 46 223
|
[7] |
Lee H S, Lee S W, Shin D H, Park H C and Jung W 1999 J. Korean. Phys. Soc. 34 S558
|
[8] |
Zavalla K J, Chaudhuri S K and Mandal K C 2013 Proc. SPIE 8852 88520D-1
|
[9] |
Chaudhuri S K, Zavalla K J, Mandal K C 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 728 97
|
[10] |
Zat'ko B, Dubecký F, Šagátová A, Sedlačová K and Ryć L 2015 J. Instrum. 10 C04009
|
[11] |
Garcia T R, Kumar A, Reinke B, Blue T E, Windl W 2013 Appl. Phys. Lett. 103 152108
|
[12] |
Abubakar Y M, Lohstroh A and Sellin P J 2015 IEEE. Trans. Nucl. Sci. 62 2360
|
[13] |
Casady J B and Johnson R W 1996 Solid-State Electron. 39 1409
|
[14] |
Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363
|
[15] |
Roccaforte F, La Via F, Baeri A, Raineri V, Calcagna L and Mangana F 2004 J. Appl. Phys. 96 4313
|
[16] |
Kuchuk A V, Borowicz P, Wzorek M, Borysiewicz M, Ratajczak R, Golaszewska K, Kaminska E, Kladko V and Piotrowska A 2016 Adv. Condens. Matter. Phys. 2016
|
[17] |
Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 49 85
|
[18] |
Chen F P, Zhang Y M, Zhang Y M, Tang X Y, Wang Y H and Chen W H 2012 Chin. Phys. B 21 037304
|
[19] |
Wang Y H, Zhang Y M, Zhang Y M, Song Q W and Jia R X 2011 Chin. Phys. B 20 087305
|
[20] |
Han L C, Shen H J, Liu K A, Wang Y Y, Tang Y D, Bai Y, Xu H Y, Wu Y D and Liu X Y 2014 Chin. Phys. B 23 127302
|
[21] |
Levit M, Grimberg I, Weiss B Z 1996 J. Appl. Phys. 80 167
|
[22] |
Han S Y, Kim K H, Kim J K, Jang H W, Lee K W, Kim N K, Kim E D and Lee J L 2001 Appl. Phys. Lett. 79 1816
|
[23] |
Han S Y and Lee J L 2002 J. Electrochem. Soc. 149 G189
|
[24] |
Larger R and Frechette L G 2011 Solid-State Sensors Actuators Microsystems Conference (TRANSDUCERS), June 5-9, 2011, Beijing China, p. 2879
|
[25] |
Du Y Y, Zhang C L and Cao X L 2016 Acta Phys. Sin. 65 207301 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|