Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 087304    DOI: 10.1088/1674-1056/27/8/087304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection

Xin Ye(叶鑫)2, Xiao-Chuan Xia(夏晓川)1, Hong-Wei Liang(梁红伟)1, Zhuo Li(李卓)2, He-Qiu Zhang(张贺秋)1, Guo-Tong Du(杜国同)2, Xing-Zhu Cui(崔兴柱)3, Xiao-Hua Liang(梁晓华)3,4
1 School of Microelectronics, Dalian University of Technology, Dalian 116024, China;
2 School of Physics, Dalian University of Technology, Dalian 116024, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences(CAS), Beijing 100049, China;
4 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700℃ to investigate the effects of thermal stability of the Schottky contact on the structural and electrical properties of the detectors. At the annealing temperature of 500℃, the two nickel silicides (i.e., Ni31Si12 and Ni2Si) are formed at the interface and result in the formation of an inhomogeneous Schottky barrier. By increasing the annealing temperature, the Ni31Si12 transforms into the more stable Ni2Si. The structural evolution of the Schottky contact directly affects the electrical properties and alpha particle energy resolutions of the detectors. A better energy resolution of 2.60% is obtained for 5.48-MeV alpha particles with the detector after being annealed at 600℃. As a result, the Au/Ni/n-type 4H-SiC Schottky detector shows a good performance after thermal treatment at temperatures up to 700℃.
Keywords:  alpha particle detector      silicon carbide      thermal stability      Schottky barrier  
Received:  12 April 2018      Revised:  16 May 2018      Accepted manuscript online: 
PACS:  73.40.Sx (Metal-semiconductor-metal structures)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  29.40.Wk (Solid-state detectors)  
  29.30.Ep (Charged-particle spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675198, 61574026, and 11405017), the National Key Research and Development Program of China (Grant Nos. 2016YFB0400600 and 2016YFB0400601), the Natural Science Foundation of Liaoning Province of China (Grant Nos. 201602453 and 201602176), and the China Postdoctoral Science Foundation (Grant No. 2016M591434).
Corresponding Authors:  Hong-Wei Liang     E-mail:  hwliang@dlut.edu.cn

Cite this article: 

Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华) Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection 2018 Chin. Phys. B 27 087304

[1] Chaudhuri S K, Krishna R M, Zavalla K J, Mandal K C 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214
[2] Cheng Y, Zhao G J, Liu Y H, Sun Y J, Wang T and Chen Z Z 2015 Chin. Phys. B 24 107303
[3] Wesch W 1996 Nucl. Instrum. Methods Phys. Res. Sect. B 116 305
[4] Wang Z, Liu W, Wang C 2016 J. Electron. Mater. 45 267
[5] Raja P V, Akhtar J, Rao C V S, Vala S, Abhangi M, Murty N N 2017 Nucl. Instrum. Methods Phys. Res. Sect. A 869 118
[6] Marinova T, Kakanakova-Georgieva A, Krastev V, Kakanakov R, Neshev M, Kassamakova L, Noblanc O, Arnodo C, Cassette S, Brylinski C, Pecz B, Radnoczi and Vincze G 1997 Mater. Sci. Eng. B 46 223
[7] Lee H S, Lee S W, Shin D H, Park H C and Jung W 1999 J. Korean. Phys. Soc. 34 S558
[8] Zavalla K J, Chaudhuri S K and Mandal K C 2013 Proc. SPIE 8852 88520D-1
[9] Chaudhuri S K, Zavalla K J, Mandal K C 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 728 97
[10] Zat'ko B, Dubecký F, Šagátová A, Sedlačová K and Ryć L 2015 J. Instrum. 10 C04009
[11] Garcia T R, Kumar A, Reinke B, Blue T E, Windl W 2013 Appl. Phys. Lett. 103 152108
[12] Abubakar Y M, Lohstroh A and Sellin P J 2015 IEEE. Trans. Nucl. Sci. 62 2360
[13] Casady J B and Johnson R W 1996 Solid-State Electron. 39 1409
[14] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363
[15] Roccaforte F, La Via F, Baeri A, Raineri V, Calcagna L and Mangana F 2004 J. Appl. Phys. 96 4313
[16] Kuchuk A V, Borowicz P, Wzorek M, Borysiewicz M, Ratajczak R, Golaszewska K, Kaminska E, Kladko V and Piotrowska A 2016 Adv. Condens. Matter. Phys. 2016
[17] Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 49 85
[18] Chen F P, Zhang Y M, Zhang Y M, Tang X Y, Wang Y H and Chen W H 2012 Chin. Phys. B 21 037304
[19] Wang Y H, Zhang Y M, Zhang Y M, Song Q W and Jia R X 2011 Chin. Phys. B 20 087305
[20] Han L C, Shen H J, Liu K A, Wang Y Y, Tang Y D, Bai Y, Xu H Y, Wu Y D and Liu X Y 2014 Chin. Phys. B 23 127302
[21] Levit M, Grimberg I, Weiss B Z 1996 J. Appl. Phys. 80 167
[22] Han S Y, Kim K H, Kim J K, Jang H W, Lee K W, Kim N K, Kim E D and Lee J L 2001 Appl. Phys. Lett. 79 1816
[23] Han S Y and Lee J L 2002 J. Electrochem. Soc. 149 G189
[24] Larger R and Frechette L G 2011 Solid-State Sensors Actuators Microsystems Conference (TRANSDUCERS), June 5-9, 2011, Beijing China, p. 2879
[25] Du Y Y, Zhang C L and Cao X L 2016 Acta Phys. Sin. 65 207301 (in Chinese)
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[3] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[4] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[5] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[6] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[7] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[8] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[9] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[10] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[11] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[12] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[13] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[14] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[15] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
No Suggested Reading articles found!