Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097803    DOI: 10.1088/1674-1056/abf10c

Enhanced absorption process in the thin active region of GaAs based p-i-n structure

Chen Yue(岳琛)1,2,3, Xian-Sheng Tang(唐先胜)1,2,3, Yang-Feng Li(李阳锋)1, Wen-Qi Wang(王文奇)1, Xin-Xin Li(李欣欣)1,2,3, Jun-Yang Zhang(张珺玚)1,2,3, Zhen Deng(邓震)1, Chun-Hua Du(杜春花)1, Hai-Qiang Jia(贾海强)1,3,4, Wen-Xin Wang(王文新)1,3,4, Wei Lu(陆卫)5, Yang Jiang(江洋)1,†, and Hong Chen(陈弘)1,3,4,‡
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Academy of Sciences, Beijing 100049, China;
3 Center of Material and Optoelectronics Engineering, University of Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Material Laboratory, Dongguan 523808, China;
5 State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  The optical absorption is the most important macroscopic process to characterize the microscopic optical transition in the semiconductor materials. Recently, great enhancement has been observed in the absorption of the active region within a p-n junction. In this paper, GaAs based p-i-n samples with the active region varied from 100 nm to 3 μ were fabricated and it was observed that the external quantum efficiencies are higher than the typical results, indicating a new mechanism beyond the established theories. We proposed a theoretical model about the abnormal optical absorption process in the active region within a strong electric field, which might provide new theories for the design of the solar cells, photodetectors, and other photoelectric devices.
Keywords:  photoelectric      p-n junction      absorption coefficient  
Received:  10 December 2020      Revised:  19 March 2021      Accepted manuscript online:  23 March 2021
PACS:  78.55.Cr (III-V semiconductors)  
  78.40.Fy (Semiconductors)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61991441) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000).
Corresponding Authors:  Yang Jiang, Hong Chen     E-mail:;

Cite this article: 

Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘) Enhanced absorption process in the thin active region of GaAs based p-i-n structure 2021 Chin. Phys. B 30 097803

[1] Gratzel M 2001 Nature 414 338
[2] Baeg K J, Binda M, Natali D, et al. 2013 Adv. Mater. 25 4267
[3] Meng J, Feng J, Sun Q, et al. 2015 Sol. Energy 122 464
[4] Park S H, Roy A, Beaupré S, et al. 2009 Nat. Photon. 3 297
[5] Levine B F 1993 J. Appl. Phys. 74 R1
[6] Levine B F, Bethea C G, Hasnain G, et al. 1990 Appl. Phys. Lett. 56 851
[7] Wu D G, Cahen D, Graf P, et al. 2015 Chemistry 7 1743
[8] Rogalski A, Antoszewski J and Faraone L 2009 J. Appl. Phys. 105 348
[9] Haga E and Kimura H 1964 J. Phys. Soc. Jpn. 19 658
[10] Spitzer W G and Whelan J M 1959 Phys. Rev. 114 59
[11] Blakemore J S 1982 J. Appl. Phys. 53 R123
[12] Nakayama K, Tanabe K and Atwater H A 2008 Appl. Phys. Lett. 93 2327
[13] Pfann W G and Van Roosbroeck W 1954 J. Appl. Phys. 25 1422
[14] Sturge M D 1962 Phys. Rev. 127 768
[15] Casey H C, Sell D D and Wecht K W 1975 J. Appl. Phys. 46 250
[16] Aspnes D E and Studna A A 1983 Phys. Rev. B 27 985
[17] Jellison G E 1992 Opt. Mater. 1 151
[18] Rakić A D and Majewski M L 1996 J. Appl. Phys. 80 5909
[19] Aspnes D E, Kelso S M and Logan R A, et al. 1986 J. Appl. Phys. 60 754
[20] Adachi S 1989 J. Appl. Phys. 66 6030
[21] Klingshirn C F 2006 Semiconductor Optics
[22] Yue G, Jia H, Wang W, et al. 2019 Chin. Phys. Lett. 36 057201
[23] Wang W, Wang L, Jiang Y, et al. 2016 Chin. Phys. B 25 097307
[24] Sun Q, Wang L, Jiang Y, et al. 2016 Chin. Phys. Lett. 33 106801
[25] Sun L, Wang L, Liu J, et al. 2018 Superlattice. Microst. 122 80
[26] Adachi S 1985 J. Appl. Phys. 58 R1
[27] Levine B F, Hasnain G, Bethea C G, et al. 1989 Appl. Phys. Lett. 54 2704
[28] Pan D, Towe E and Kennerly S 1998 Appl. Phys. Lett. 73 1937
[29] Gong X, Feng S, Yue Y, et al. 2016 Journal of Semiconductors 37 44011
[30] Yang S, Dou X, Yu Y, et al. 2015 Chin. Phys. Lett. 32 77804
[31] Stefan L 2006 Power Semiconductors
[32] Nichols K H, Yee C M L and Wolfe C M 1980 Solid State Electron. 23 109
[33] Poela J and Reklaitis A 1980 Solid State Electron. 23 927
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] Origin of anomalous enhancement of the absorption coefficient in a PN junction
Xiansheng Tang(唐先胜), Baoan Sun(孙保安), Chen Yue(岳琛), Xinxin Li(李欣欣), Junyang Zhang(张珺玚), Zhen Deng(邓震), Chunhua Du(杜春花), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Yang Jiang(江洋), Weihua Wang(汪卫华), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097804.
[4] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[5] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[6] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
[7] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[8] Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2020, 29(6): 064207.
[9] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[10] Preparation and photoelectric properties of cadmium sulfide quantum dots
Yue Gu(古月), Libin Tang(唐利斌), Xiaopeng Guo(郭小鹏), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(4): 047803.
[11] SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector
Yao Li(李尧), Libin Tang(唐利斌), Rujie Li(李汝劼), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(3): 037801.
[12] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
I Kabir, S A Mahmood. Chin. Phys. B, 2019, 28(12): 128801.
[13] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[14] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[15] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
No Suggested Reading articles found!