Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 127104    DOI: 10.1088/1674-1056/25/12/127104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Large reversible magnetocaloric effect induced by metamagnetic transition in antiferromagnetic HoNiGa compound

Yi-Xu Wang(王一旭)1, Hu Zhang(张虎)1, Mei-Ling Wu(吴美玲)1, Kun Tao(陶坤)1, Ya-Wei Li(李亚伟)1, Tim Yan(颜天宝)2, Ke-Wen Long(龙克文)2, Teng Long(龙腾)1, Zheng Pang(庞铮)1, Yi Long(龙毅)1
1. School of Materials Science and Engineering, University of Science and Technology of Beijing, Beijing 100083, China;
2. ChuanDong Magnetic Electronic Co. Ltd., FoShan 528513, China
Abstract  

The magnetic properties and magnetocaloric effects (MCE) of HoNiGa compound are investigated systematically. The HoNiGa exhibits a weak antiferromagnetic (AFM) ground state below the Ńeel temperature TN of 10 K, and the AFM ordering could be converted into ferromagnetic (FM) ordering by external magnetic field. Moreover, the field-induced FM phase exhibits a high saturation magnetic moment and a large change of magnetization around the transition temperature, which then result in a large MCE. A large -ΔSM of 22.0 J/kg K and a high RC value of 279 J/kg without magnetic hysteresis are obtained for a magnetic field change of 5 T, which are comparable to or even larger than those of some other magnetic refrigerant materials in the same temperature range. Besides, the μ0H2/3 dependence of |ΔSMpk| well follows the linear fitting according to the mean-field approximation, suggesting the nature of second-order FM-PM magnetic transition under high magnetic fields. The large reversible MCE induced by metamagnetic transition suggests that HoNiGa compound could be a promising material for magnetic refrigeration in low temperature range.

Keywords:  rare-earth compound      magnetocaloric effect      metamagnetic transition  
Received:  29 July 2016      Revised:  20 September 2016      Accepted manuscript online: 
PACS:  71.20.Eh (Rare earth metals and alloys)  
  75.30Cr  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51671022 and 51427806), the Beijing Natural Science Foundation, China (Grant No. 2162022), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-15-002A3).

Corresponding Authors:  Hu Zhang     E-mail:  zhanghu@ustb.edu.cn

Cite this article: 

Yi-Xu Wang(王一旭), Hu Zhang(张虎), Mei-Ling Wu(吴美玲), Kun Tao(陶坤), Ya-Wei Li(李亚伟), Tim Yan(颜天宝), Ke-Wen Long(龙克文), Teng Long(龙腾), Zheng Pang(庞铮), Yi Long(龙毅) Large reversible magnetocaloric effect induced by metamagnetic transition in antiferromagnetic HoNiGa compound 2016 Chin. Phys. B 25 127104

[1] Tishin A M and Spichkin Y I 2003 The Magnetocaloric Effect and its Application (IOP Publishing)
[2] Shen B G, Hu F X, Dong Q Y and Sun J R 2013 Chin. Phys. B 22 017502
[3] Yue M, Zhang H G, Liu D M and Zhang J X 2015 Chin. Phys. B 24 017505
[4] Tegus O, Bao L H and Song L 2013 Chin. Phys. B 22 037506
[5] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L and Du Y W 2013 Chin. Phys. B 22 077506
[6] Franco V, Blázquez J S, Ingale B and Conde A 2012 Ann. Rev. Mater. Res. 42 305
[7] Liu J 2014 Chin. Phys. B 23 047503
[8] Li L W 2016 Chin. Phys. B 25 037502
[9] Zhang D K, Zhao J L, Zhang H G and Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese)
[10] Samanta T, Das I and Banerjee S 2007 Appl. Phys. Lett. 91 152506
[11] Zuo W L, Hu F X, Sun J R and Shen B G 2015 Chin. Phys. B 24 097104
[12] Chen J, Shen B G, Dong Q Y, Hu F X and Sun J R 2010 Appl. Phys. Lett. 96 152501
[13] Zhang H, Wu Y Y, Long Y, Wang H S, Zhong K X, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 116 213902
[14] Jang D, Gruner T, Steppke A, Mitsumoto K, Geibel C and Brando M 2015 Nat. Commun. 6 8680
[15] Gupta S and Suresh K G 2015 J. Alloys Compd. 618 562
[16] Zhang H and Shen B G 2015 Chin. Phys. B 24 127504
[17] Singh N K, Suresh K G, Nirmala R, Nigam A K and Malik S K 2007 J. Appl. Phys. 101 093904
[18] Zhang H, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G 2011 J. Appl. Phys. 109 123926
[19] Rietveld H M 1967 Acta Crystallogra 22 151
[20] Larson A C and Von Dreele R B 1994 Document LAUR 86
[21] Toby B H 2001 J. Appl. Crystallogr. 34 210
[22] Dwight A E 1967 in Proc. 6th Rare Earth Resaerch Conf., Oak Ridge Laboratories, Tennessee, p. 156
[23] Semitelou I and Kotsanidis P 1991 J. Magn. Magn. Mater. 102 67
[24] Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett. 102 092401
[25] Mallik R, Sampathkumaran E V and Paulose P L 1998 Solid State Commun. 106 169
[26] Ahn K, Pecharsky A O, Gschneidner K A Jr and Pecharsky V K 2005 J. Appl. Phys. 97 063901
[27] Shen J, Zhang H and Wu J F 2011 Chin. Phys. B 20 027501
[28] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853
[29] Banerjee B K 1964 Phys. Lett. 12 16
[30] Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[31] Arora P, Chattopadhyay M K, Sharath Chandra L S, Sharma V K and Roy S B 2011 J. Phys.:Condens. Matter 23 056002
[32] Chen J 2010 "Magnetic properties and magnetocaloric effects in Ni2In-type RCuSi and CrB-type RGa compounds", Ph. D. Thesis (Graduate University of Chinese Academy of Sciences) (in Chinese)
[33] Chaturvedi A, Stefanoski S, Phan M H, Nolas G S and Srikanth H 2011 Appl. Phys. Lett. 99 162513
[34] Li L W and Nishimura K 2009 Appl. Phys. Lett. 95 132505
[35] Von Ranke P J, Mota M A, Grangeia D F, Carvalho A M G, Gandra F C G, Coelho A A, Caldas A, de Oliveira N A and Gama S 2004 Phys. Rev. B 70 134428
[36] Li L W, Nishimura K, Kadonaga M, Qian Z and Huo D 2011 J. Appl. Phys. 110 043912
[37] Zhang X X, Wang W F and Wen G H 2001 J. Phys.:Condens. Matter 13 L747
[38] Wang L C, Dong Q Y, Mo Z J, Xu Z Y, Hu F X, Sun J R and Shen B G 2013 J. Appl. Phys. 114 163915
[39] Chen J, Shen B G, Dong Q Y and Sun J R 2010 Solid State Commun. 150 1429
[40] Oesterreicher H and Parker F T 1984 J. Appl. Phys. 55 4334
[41] Yang L H, Zhang H, Hu F X, Sun J R, Pan L Q and Shen B G 2014 J. Alloys Compd. 596 58
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[13] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!