Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 127103    DOI: 10.1088/1674-1056/25/12/127103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Identification of surface oxygen vacancy-related phonon-plasmon coupling in TiO2 single crystal

Jun-Hong Guo(郭俊宏)1, Ting-Hui Li(李廷会)2, Fang-Ren Hu(胡芳仁)1, Li-Zhe Liu(刘力哲)3
1. School of Optoelectronic Engineering and Grüenberg Research Center, Nanjing University of Posts and Telecommunicates, Nanjing 210023, China;
2. College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China;
3. Nanjing National Laboratory of Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  

Oxygen vacancies (OVs) play a critical role in the physical properties and applications of titanium dioxide nanostructures, which are widely used in electrochemistry and photo catalysis nowadays. In this work, OVs were artificially introduced in the surface of a pure TiO2 single crystal by pulsed laser irradiation. Raman spectra showed that the intensity of Eg mode was enhanced. Theoretical calculations disclose that this was caused by the strong coupling effect between the phonon vibration and plasmon induced by the OVs-related surface deformation, and good agreement was achieved between the experiments and theory.

Keywords:  luminescent materials      Raman scattering      oxygen vacancies  
Received:  16 August 2016      Revised:  29 August 2016      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  78.40.Fy (Semiconductors)  
  78.30.-j (Infrared and Raman spectra)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61574080, 11404162, 61505085, and 61264008) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130549).

Corresponding Authors:  Fang-Ren Hu, Li-Zhe Liu     E-mail:  hufr@njupt.edu.cn;lzliu@nju.edu.cn

Cite this article: 

Jun-Hong Guo(郭俊宏), Ting-Hui Li(李廷会), Fang-Ren Hu(胡芳仁), Li-Zhe Liu(刘力哲) Identification of surface oxygen vacancy-related phonon-plasmon coupling in TiO2 single crystal 2016 Chin. Phys. B 25 127103

[1] Reddy B M and Khan A 2005 Catal. Rev. Sci. Eng. 47 257
[2] Idota Y, Kubota T, Matsufuji A, Maekawa Y and Miyasaka T 1997 Science 276 1395
[3] Brovelli S, Chiodini A, Lauria A, Meinardi F and Paleari A 2006 Phys. Rev. B 73 073406
[4] Kucheyev S O, Baumann T F, Sterne P A, Wang Y M, Buuren T, Hamza A V, Terminello L J and Willey T M 2005 Phys. Rev. B 72 035404
[5] Fröschl T, Hörmann U, Kubiak P, Kučerová G, Pfanzelt M, Weiss C K, Behm R J, Hüsing N, Kaiser U, Landfesterd K and Wohlfahrt-Mehrens M 2012 Chem. Soc. Rev. 41 5313
[6] Sumita M, Hu C P and Tateyama Y 2010 J. Phys. Chem. C 114 18529
[7] Kato H, Asakura K and Kudo A 2003 J. Am. Chem. Soc. 125 3082
[8] Fujishima A, Rao T N and Tryk D A 2000 J. Photochem. Photobiol. C 1 1
[9] Zeng W, Liu T, Wang Z C, Tsukimoto S S, Saito M and Ikuhara Y 2010 Mater. Trans. 51 171
[10] Linsebigler A L, Lu G Q and Yates J T 1995 Chem. Rev. 95 735
[11] Jeon K S, Oh S D, Sun Y D, Yoshikawa H Y, Masuhara H and Yoon M 2009 Phys. Chem. Chem. Phys. 11 534
[12] Bavykin D V, Gordeev S N, Moskalenko A V, Lapkin A A and Walsh F C 2008 J. Phys. Chem. B 109 8565
[13] Wu J M, Shih H C and Wu W T 2006 Nanotechnology 17 105
[14] Abazović N D, Comor M I, Dramicánin M D, Jovanović D J, Ahrenkiel S P and Nedeljković J M 2006 J. Phys. Chem. B 110 25366
[15] Wang D Z, Wen S L, Chen J, Zhang S Y and Li FQ 1994 Phys. Rev. B 49 14282
[16] Maki-Jaskari M A and Rantala T T 2002 Phys. Rev. B 65 245428
[17] Verma R, Mantri B, Ramphal and Srivastava A K 2015 Adv. Mater. Lett. 6 324
[18] Zhao Z H, Tian J, Sang Y, Cabot A and Liu H 2015 Adv. Mater. 27 2557
[19] Liu L Z, Wu X L, Li T H and Shen J C 2015 Appl. Surf. Sci. 347 265
[20] Wang D N, Miller A C and Notis M R 1996 Surf. Interface Anal. 24 127
[21] Liang C H, Shimizu Y, Sasaki T and Koshizaki N 2003 J. Phys. Chem. B 107 9220
[22] Li Y Z, Hwang D S, Lee N H and Kim S J 2005 Chem. Phys. Lett. 404 25
[23] Arsov L D, Kormann C and Plieth W 1991 J. Raman Spectra 22 573
[24] Samanta K, Bhattacharya P and Katiyar R S 2007 Phys. Rev. B 75 035208
[25] Wu X L, Xiong S J, Sun L T, Shen J C and Chu P K 2009 Small 5 2823
[26] Liu L Z, Li T H, Wu X L, Shen J C and Chu P K 2012 J. Raman Spectra 43 1423
[27] Liu L Z, Wu X L, Shen J C, Li T H, Gao F and Chu P K 2010 Chem. Commun. 46 5539
[28] Katayama S and Murase K 1977 J. Phys. Soc. Jpn. 42 886
[29] Mitev P D, Hermansson K, Montanari B and Refson K 2010 Phys. Rev. B 81 134303
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[4] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[5] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[6] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[7] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[8] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[9] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[10] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[11] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[12] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[13] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[14] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[15] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
No Suggested Reading articles found!