Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 127301    DOI: 10.1088/1674-1056/25/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer

Xiao-Jie Jia(贾晓洁)1, Chun-Lan Zhou(周春兰)1, Jun-Jie Zhu(朱俊杰)2, Su Zhou(周肃)1, Wen-Jing Wang(王文静)1
1. The Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
2. Solar Energy Department, Institute for Energy Technology, Instituttveien 18, 2007 Kjeller, Norway
Abstract  

It is studied in this paper that the electrical characteristics of the interface between SiOyNx/SiNx stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiOyNx layer on interface parameters, such as interface state density Dit and fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance-voltage measurements reveal that inserting a thin SiOyNx layer between the SiNx and the silicon wafer can suppress Qf in the film and Dit at the interface. The positive Qf and Dit and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiOyNx film increasing. Prepared by deposition at a low temperature and a low ratio of N2O/SiH4 flow rate, the SiOyNx/SiNx stacks result in a low effective surface recombination velocity (Seff) of 6 cm/s on a p-type 1 Ω·cm-5 Ω·cm FZ silicon wafer. The positive relationship between Seff and Dit suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it.

Keywords:  solar cell      interface      passivation  
Received:  26 July 2016      Revised:  31 August 2016      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  81.65.Rv (Passivation)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050302) and the National Natural Science Foundation of China (Grant No. 61306076).

Corresponding Authors:  Chun-Lan Zhou     E-mail:  zhouchl@mail.iee.ac.cn

Cite this article: 

Xiao-Jie Jia(贾晓洁), Chun-Lan Zhou(周春兰), Jun-Jie Zhu(朱俊杰), Su Zhou(周肃), Wen-Jing Wang(王文静) Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer 2016 Chin. Phys. B 25 127301

[1] Liao J H, Hsieh J Y, Lin H J, Tang W Y, Chiang C L, Lo Y S, Wu T B, Yang L W, Yang T and Chen K C 2009 J. Phys. D:Appl. Phys. 42 175102
[2] Laades A, Blech M, Biank H C, Maier C, Roczen M, Leschinski C, Strutzberg H and Lawrenz A 2011 Proceedings of the 26th EUPVSEC, September 5-8, 2011, Hamburg, Germany, p. 1653
[3] Huang C S, Huang C J, Chen C T, Lin S C and Kuo L C 2002 In Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE, New York, USA, p. 469
[4] del Prado A, San Andres E, Martinez F L, Martil I, Gonzalez-Diaz G, Bohne W, Rohrich J, Selle B and Fernandez M 2002 Vacuum 67 507
[5] Lee D Y, Lee H H, Ahn J Y, Park H J, Kim J H, Kwon H J and Jeong J W 2011 Sol. Energy Mater. Sol. Cells 95 26
[6] Seiffe J, Gautero L, Hofmann M, Rentsch J, Preu R, Weber S and Eichel R A 2011 J. Appl. Phys. 109 034105
[7] Mueller T, Schwertheim S and Fahrner W R 2010 J. Appl. Phys. 107 014504
[8] Zhou C, Zhu J, Foss S E, Haug H, Nordseth O, Marstein E S and Wang W 2015 Energy Procedia 77 434
[9] Sommer D, Brinkmann N, Micard G, Hahn G and Terheiden B 2012 27th European Photovoltaic Solar Energy Conference and Exhibition, 2012, p. 879
[10] Dupuis J, Fourmond E, Leliévre J F, Ballutaud D and Lemiti M 2008 Thin Solid Films 516 6954
[11] Hallam B, Tjahjono B and Wenham S 2012 Sol. Energy Mater. Sol. Cells 96 173
[12] del Prado A, San Andrés E, Mártil I, González-Díaz G, Kliefoth K and Füssel W 2004 Semicond. Sci. Technol. 19 133
[13] Hill W A and Coleman C C 1980 Solid-State Electron. 23 987
[14] Cost S 1996 Microelectron. J. 27 4
[15] Cuevas A and Macdonald D 2004 Solar Energy 76 255
[16] Lundgren P, Andersson M O and Farmer K R 1993 J. Appl. Phys. 74 4780
[17] Konofaos N, Evangelou E K, Aslanoglou X, Kokkoris M and Vlastou R 2004 Semicond. Sci. Technol. 19 50
[18] Martinez F L, San Andrés E, Del Prado A, Mártil I, Bravo D and López F J 2001 J. Appl. Phys. 90 1574
[19] Perera R, Ikeda A, Hattori R and Kuroki, Y 2003 Thin Solid Films 423 212
[20] Brews J R and Nicollian E H 1982 MOS Physics and Technology
[21] Warren W L, Fleetwood D M, Schwank J R, Shaneyfelt M R, Draper B L, Winokur P S, Knoll M G, Vanheusden K, Devine R A B and Archer L B 1997 Nucl. Sci. 44 1789
[22] Prabhakaran K, Kobayashi Y and Ogino T 1998 Appl. Surf. Sci. 130 182
[23] Aberle A G 2001 Sol. Energy Mater. Sol. Cells 65 239
[24] Aberle A G 1999 Center for Photovoltaic Engineering, University of New South Wales
[25] Robertson J, Warren W L and Kanicki J. 1995 J. Non-Cryst. Solids 187 297
[26] Zhu J J, Zhou S, Huang H, Marstein E S, Foss S E and Wang W J 2014 Proc. 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, Nederland, p. 1100
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[5] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[6] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[7] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[8] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[9] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[10] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[11] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[12] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[13] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[14] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[15] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
No Suggested Reading articles found!