CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Optical properties of rubrene thin film prepared by thermal evaporation |
Chen Liang (陈亮), Deng Jin-Xiang (邓金祥), Kong Le (孔乐), Cui Min (崔敏), Chen Ren-Gang (陈仁刚), Zhang Zi-Jia (张紫佳) |
College of Applied Sciences, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evaporation technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm-1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence.
|
Received: 13 May 2014
Revised: 03 November 2014
Accepted manuscript online:
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
71.20.Rv
|
(Polymers and organic compounds)
|
|
77.84.Jd
|
(Polymers; organic compounds)
|
|
Fund: Project supported by the Funding for the Development Project of Beijing Municipal Education Commission of Science and Technology, China (Grant No. KZ201410005008), the Natural Science Foundation of Beijing City, China (Grant No. 4102014), and the Graduate Science Fund of the Beijing University of Technology, China (Grant No. ykj-2013-9835). |
Corresponding Authors:
Deng Jin-Xiang
E-mail: jdeng@bjut.edu.cn
|
Cite this article:
Chen Liang (陈亮), Deng Jin-Xiang (邓金祥), Kong Le (孔乐), Cui Min (崔敏), Chen Ren-Gang (陈仁刚), Zhang Zi-Jia (张紫佳) Optical properties of rubrene thin film prepared by thermal evaporation 2015 Chin. Phys. B 24 047801
|
[1] |
Pandey A K and Nunzi J M 2007 Appl. Phys. Lett. 90 263508
|
[2] |
Li Y W, Liu P Y, Hou L T and Wu B 2010 Acta Phys. Sin. 59 1248 (in Chinese)
|
[3] |
Li Z F, Du J, Tang Q, Wang F, Xu J B and Yu J C 2010 Adv. Mater. 22 3242
|
[4] |
Chen Y and Shih I 2009 Appl. Phys. Lett. 94 083304
|
[5] |
Bi W T, Wu X M, Hua Y L, Sun J E, Xiao Z H, Wang L and Yin S G 2014 Chin. Phys. B 23 017803
|
[6] |
Yan G, Zhao S L, Xu Z, Zhang F J, Kong C, Zhu H N, Song D D and Xu X R 2010 Chin. Phys. B 19 037804
|
[7] |
Ren S L, Wang Y and Rao A M 1991 Appl. Phys. Lett. 59 2678
|
[8] |
Peumans P, Yakimov A and Forrest S R 2003 J. Appl. Phys. 93 3693
|
[9] |
Tugluoglu N, Baris B, Gurel H, Karadeniz S and Yuksel O F 2014 J. Alloys Compd. 582 696
|
[10] |
Pan S L, Wang Z J and Rothberg L J 2006 J. Phys. Chem. B 110 17383
|
[11] |
Chen Y, Munechika K, Plante I J L, Munro A M, Skrabalak S E, Xia Y and Ginger D S 2008 Appl. Phys. Lett. 93 053106
|
[12] |
Lei D Y, Li J and Ong H C 2007 Appl. Phys. Lett. 91 021112
|
[13] |
Yang B, Deng J X and Zhao W P 2009 Proc. SPIE 7381 738112
|
[14] |
Farag A A M, Haggag S M S and Mahmoud M E 2011 Spectrochim. Acta A 82 467
|
[15] |
Farag A A M and Yahia I S 2010 Opt. Commun. 283 4310
|
[16] |
Cordella F, Orru R, Loi M A, Mura A and Bongiovanni G 2003 Phys. Rev. B 68 113203
|
[17] |
Nahass M M E, Farag A M, Rahman K F A E and Darwish A A A 2005 Opt. Laser Technol. 37 513
|
[18] |
Agilan S, Mangalaraj D, Narayandass S K, Velumani S and Ignatiev A 2007 Vacuum 81 813
|
[19] |
Park S W, Hwang J M, Choi J M, Hwang D K, Oh M S, Kim J H and Im S 2007 Appl. Phys. Lett. 90 153512
|
[20] |
Najafov H, Biaggio I, Podzorov V, Calhoun M F and Gershenson M E 2006 Phys. Rev. Lett. 96 056604
|
[21] |
Han Y D, Lee J W, Park D H, Yang S H, Kim B K, Kim J and Joo J 2011 Synthetic Metals 161 2103
|
[22] |
Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles, p. 295 (New York: Wiley)
|
[23] |
You J B, Zhang X W, Fan Y M, Qu S and Chen N F 2007 Appl. Phys. Lett. 91 231907
|
[24] |
Lakowicz J R 2005 Anal. Biochem. 337 171
|
[25] |
Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
|
[26] |
Neal T D, Okamoto K and Scherer A 2005 Opt. Express 13 5522
|
[27] |
Yu W, Wang X Z, Dai W L, Lu W B, Liu Y M and Fu G S 2013 Chin. Phys. B 22 057804
|
[28] |
Weimer W A and Dyer M J 2001 Appl. Phys. Lett. 79 3164
|
[29] |
Hirai M and Kumar A 2006 J. Appl. Phys. 100 014309
|
[30] |
Deng J X, Chen L, Man C, Kong L, Cui M and Gao X F 2014 Chin. Phys. B 23 047104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|