Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 016102    DOI: 10.1088/1674-1056/ac0cd8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films

Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎)
College of Electronic and Optical Engineering&College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Most amorphous carbon (a-C) applications require films with ultra-thin thicknesses; however, the electronic structure and opto-electronic characteristics of such films remain unclear so far. To address this issue, we developed a theoretical model based on the density functional theory and molecular dynamic simulations, in order to calculate the electronic structure and opto-electronic characteristics of the ultra-thin a-C films at different densities and temperatures. Temperature was found to have a weak influence over the resulting electronic structure and opto-electronic characteristics, whereas density had a significant influence on these aspects. The volume fraction of sp3 bonding increased with density, whereas that of sp2 bonding initially increased, reached a peak value of 2.52 g/cm3, and then decreased rapidly. Moreover, the extinction coefficients of the ultra-thin a-C films were found to be density-sensitive in the long-wavelength regime. This implies that switching the volume ratio of sp2 to sp3 bonding can effectively alter the transmittances of ultra-thin a-C films, and this can serve as a novel approach toward photonic memory applications. Nevertheless, the electrical resistivity of the ultra-thin a-C films appeared independent of temperature. This implicitly indicates that the electrical switching behavior of a-C films previously utilized for non-volatile storage applications is likely due to an electrically induced effect and not a purely thermal consequence.
Keywords:  amorphous carbon      density      optical properties      electronic structure      density functional theory  
Received:  29 January 2021      Revised:  10 June 2021      Accepted manuscript online:  21 June 2021
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  81.05.U- (Carbon/carbon-based materials)  
  92.60.hv (Pressure, density, and temperature)  
  36.20.Kd (Electronic structure and spectra)  
Fund: Project supported by the NUPTSF (Grant Nos. NY220078, NY217116, and NY220112), the Science Foundation of Jiangsu Province, China (Grant Nos. BK20211273 and BZ2021031), the Dual Innovative Doctor of Jiangsu Province, China (Grant No. JSSCBS20210522), the Institution of Jiangsu Province, China (Grant No. 20KJB510014), the National and Local Joint Engineering Laboratory of RF and Micro-assembly (Grant No. KFJJ20200203), the Industry Program of Huzhou City (Grant No. 2020GG03), the Distinguished Professor Grant of Jiangsu Province, China (Grant No. RK106STP18003), the Jiangsu Province Research Foundation, China (Grant Nos. NLXZYZZ219001 and SZDG2020009), the National Natural Science Foundation of China (Grant No. 61964012), and the Foundation of Jiangxi Science and Technology Department, China (Grant No. 20202ACBL212001).
Corresponding Authors:  Lei Wang, Yi Tong     E-mail:  LeiWang1980@njupt.edu.cn;TongYi@njupt.edu.cn

Cite this article: 

Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎) First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films 2022 Chin. Phys. B 31 016102

[1] Robertson J 2002 Mater. Sci. Eng. R 37 129
[2] Duyar C O and Taner Z 2015 Diamond. Relat. Mater. 56 29
[3] Casiraghi C, Robertson J and Ferrari A C 2007 Materials Today 10 44
[4] Wang S F, Pu J C and Sung J C 2009 Thin Solid Films 517 1821
[5] Masteghin M G, Ahmad M, Tas M O, Smith C T G, Stolojan V, Cox D C and Silva S R P 2020 Appl. Phys. Lett. 116 103101
[6] Wan S, Wang L, Zhang J and Xue Q 2009 Appl. Surf. Sci. 255 3817
[7] Bachmann T A, Alexeev A M, Koelmans W W, Zipoli F, Ou A K, Dou C, Ferrari A C, Nagareddy V K, Craciun M F, Jonnalagadda V P, Curioni A, Sebastian A, Eleftheriou E and Wright C D 2017 IEEE Trans. Nanotechnol. 16 806
[8] Liu Z C and Wang L 2020 Nanotechnology 31 385204
[9] Caicedo-Davila S, Lopez-Acevedo O, Velasco-Medina J and Avila A 2016 J. Appl. Phys. 120 214303
[10] Deringer V L and Csanyi G 2017 Phys. Rev. B 95 094203
[11] Galli G, Martin R M, Car R and Parrinello M 1989 Phys. Rev. Lett. 62 555
[12] Mathioudakis C, Kopidakis G and Kelires P C 2004 Phys. Rev. B. 70 125202
[13] Liu L, Lu F, Tian J, Xia S and Diao Y 2019 Appl. Phys. A 125 366
[14] Singh P, Kaur G, Ghorai N, Goswami T, Thakur A and Ghosh H N 2020 Phys. Rev. Appl. 14 014087
[15] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[16] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[17] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Blochl P E 1994 Phys. Rev. B 50 17953
[21] Fallon P J, Veerasamy V S, Davis C A, Robertson J, Amaratunga G A J, Milne W I and Koskinen J 1993 Phys. Rev. B 48 4777
[22] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[23] Ozaki T and Kino H 2005 Phys. Rev. B 72 045121
[24] Ozaki T and Kino H 2004 Phys. Rev. B 69 195113
[25] Ozaki T 2007 Phys. Rev. B 75 035123
[26] Ozaki T 2003 Phys. Rev. B 67 155108
[27] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Goclon J 2020 Appl. Surf. Sci. 532 147267
[29] Bundy F P 1962 Science 137 1057
[30] Gao J C, Wu Q S, Persson C and Wang Z J 2021 Comput. Phys. Commun. 261 107760
[31] Shumkin G N, Zipoli F, Popov A M and Curioni A 2012 Proc. Comp. Sci. 9 641
[32] Ruppert A F, Persans P D, Hughes G J, Liang K S, Abeles B and Lanford W 1991 Phys. Rev. B 44 11381
[33] Tripathi M N, Shida K, Sahara R, Mizuseki H and Kawazoe Y 2012 J. Appl. Phys. 111 103110
[34] Rios C, Hosseini P, Wright C D, Bhaskaran H and Pernice W H P 2014 Adv. Mater. 26 1372
[35] Rios C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H, and Pernice W H P 2015 Nat. Photon. 9 725
[36] Rios C, Stegmaier M, Cheng Z G, Youngblood N, Wright C D, Pernice W H P and Bhaskaran H 2018 Opt. Mater. Express 8 2455
[37] Wang L, Gong S D, Yang C H and Wen J 2016 Nanotechnol. Rev. 5 461
[38] Santini C A, Sebastian A, Marchiori C, Jonnalagadda V P, Dellmann L, Koelmans W W, Rossell M D, Rossel C P and Eleftheriou E 2015 Nat. Commun. 6 8600
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[12] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[13] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[14] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[15] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
No Suggested Reading articles found!