Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017802    DOI: 10.1088/1674-1056/ac0782

Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices

Fu-Jian Ge(葛付建)1, Hui Peng(彭辉)1, Ye Tian(田野)1, Xiao-Yue Fan(范晓跃)1, Shuai Zhang(张帅)2,3, Xian-Xin Wu(吴宪欣)2,3, Xin-Feng Liu(刘新风)2,3,†, and Bing-Suo Zou(邹炳锁)4,‡
1 Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
3 University of Chinese Academy of Sciences(CAS), Beijing 100049, China;
4 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
Abstract  Emissions by magnetic polarons and spin-coupled d-d transitions in diluted magnetic semiconductors (DMSs) have become a popular research field due to their unusual optical behaviors. In this work, high-quality NiI2(II)-doped CdS nanobelts are synthesized via chemical vapor deposition (CVD), and then characterized by scanning electron microscopy (SEM), x-ray diffraction, x-ray photoelectron spectroscopy (XPS), and Raman scattering. At low temperatures, the photoluminescence (PL) spectra of the Ni-doped nanobelts demonstrate three peaks near the band edge: the free exciton (FX) peak, the exciton magnetic polaron (EMP) peak out of ferromagnetically coupled spins coupled with FXs, and a small higher-energy peak from the interaction of antiferromagnetic coupled Ni pairs and FXs, called antiferromagnetic magnetic polarons (AMPs). With a higher Ni doping concentration, in addition to the d-d transitions of single Ni ions at 620 nm and 760 nm, two other PL peaks appear at 530 nm and 685 nm, attributed to another EMP emission and the d-d transitions of the antiferromagnetic coupled Ni2+-Ni2+ pair, respectively. Furthermore, single-mode lasing at the first EMP is excited by a femtosecond laser pulse, proving a coherent bosonic lasing of the EMP condensate out of complicated states. These results show that the coupled spins play an important role in forming magnetic polaron and implementing related optical responses.
Keywords:  dilute magnetic semiconductor      exciton magnetic polaron      photoluminescence      antiferromagnetic magnetic polaron  
Received:  30 March 2021      Revised:  18 May 2021      Accepted manuscript online:  03 June 2021
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  75.75.-c (Magnetic properties of nanostructures)  
  78.55.Et (II-VI semiconductors)  
  71.35.Ji (Excitons in magnetic fields; magnetoexcitons)  
Fund: Project supported by the National Key Basic Research Project of China (Grant No. 2014CB920903), the Guangxi NSF Key Fund, China (Grant No. 2020GXNSFDA238004), the Fund from the Ministry of Science and Technology, China (Grant No. 2017YFA0205004), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB36000000), the National Natural Science Foundation of China (Grant Nos. 11874130, 22073022, 20173025, and 12074086), the DNL Cooperation Fund of the Chinese Academy of Sciences (Grant No. DNL202016), and the CAS Instrument Development Project (Grant No. Y950291).
Corresponding Authors:  Xin-Feng Liu, Bing-Suo Zou     E-mail:;

Cite this article: 

Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁) Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices 2022 Chin. Phys. B 31 017802

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Liu R, Shi L and Zou B 2014 ACS Appl. Mater. Interfaces 6 10353
[3] Zou B S, Hou L P, Tian Y, Han J B, Peng H, Yang X T and Shi L J 2021 New J. Phys. 23 033019
[4] Farooq M I, Khan M S, Yousaf M, Zhang K and Zou B 2020 ACS Appl. Electron. Mater. 2 1679
[5] Bhattacharjee A K and laGuillaume C B A 1997 Phys. Rev. B 55 10613
[6] Gao Q Q, Dai Y Q, Han B Q, Zhu W L, Li X C and Li C B 2019 Appl. Surf. Sci. 490 178
[7] Kuindersma S R, Sanchez J P and Haas C 1981 Physica B & C 111 231
[8] Li Y, Ji P F, Hao Y J, Song Y L, Zhou F Q and Yuan S Q 2021 Chin. Phys. B 30 016104
[9] Zhang K, Zhao D, Wang J, Zhang L, Zou M, Guo Y C, Wang S F and Zou B S 2020 ACS Appl. Nano Mater. 3 5019
[10] Xu J Y, Zhuang X J, Guo P F, Zhang Q L, Ma L, Wang X X, Zhu X L and Pan A L 2013 J. Mater. Chem. C 1 4391
[11] Yilmaz S, McGlynn E, Bacaksiz E, Cullen J and Chellappan R K 2012 Chem. Phys. Lett. 525-526 72
[12] Yilmaz S, McGlynn E, Bacaksiz E, Cullen J and Chellappan R K 2012 Chem. Phys. Lett. 525-26 72
[13] Ahmed B, Ojha A K and Kumar S 2017 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 179 144
[14] Roussos G and Schulz H J 1980 Phys. Status Solidi B-Basic Res. 100 577
[15] Zou M, Wang J, Khan M S, Mahmood A, Zhang L, Guo Y C, Zhang K, Wang S F and Zou B S 2020 Nanotechnology 31 325002
[16] Zou S Y, Kamran M A, Shi L J, Liu R B, Guo S, Kavokin A and Zou B S 2016 ACS Photon. 3 1809
[17] Suo Z Q, Dai J F, Gao S S and Gao H R 2020 Chin. Phys. B 29 117502
[18] Xu L, Su Y, Cai D, Chen Y Q and Feng Y 2006 Mater. Lett. 60 1420
[19] Kamran M A 2018 Nanotechnology 29 265602
[20] Panigrahy B, Aslam M, Misra D S, Ghosh M and Bahadur D 2010 Adv. Funct. Mater. 20 1161
[21] Li S, Zhang L, Jiang T, Chen L, Lin Y, Wang D and Xie T 2014 Chem. - Eur. J 20 311
[22] Toyozawa Y 1961 Prog. Theor. Phys. 26 29
[23] Wu B, Ning W H, Xu Q, Manjappa M, Feng M J, Ye S Y, Fu J H, Lie S, Yin T T, Wang F, Goh T W, Harikesh P C, Tay Y K E, Shen Z X, Huang F Q, Singh R J, Zhou G F, Gao F and Sum T C 2021 Sci. Adv. 7 eabd3160
[24] Zhang Y C, Chen W W and Hu X Y 2007 Cryst. Growth Des. 7 580
[25] Saravanan L, Jayavel R, Pandurangan A, Jih-Hsin L and Hsin-Yuan M 2014 Powder Technol. 266 407
[26] Miller and A. C 1992 Surf. Sci. Spectra 1 312
[27] Mansour A.N. 1994 Surf. Sci. Spectra 3 231
[28] Khallaf H, Chai G, Lupan O, Chow L, Park S and Schulte A 2009 Appl. Surf. Sci. 255 4129
[29] Deka K and Kalita M P C 2018 J. Alloys Compd. 757 209
[30] Geng P J, Li W G, Zhang X H, Zhang X Y, Deng Y and Kou H B 2017 J. Phys. D: Appl. Phys. 50 40LT02
[31] Zaanen J, Sawatzky G A and Allen J W 1985 Phys. Rev. Lett. 55 418
[32] Tao S, Miyata Y, Yanagi K, Kataura H and Okamoto H 2009 Phys. Rev. B 80 201405
[33] Kamran M A, Zou B S, Zhang K, Yang X T, Ge F J, Shi L J and Alharbi T 2019 Research (Washington, D.C.) 2019 UNSP 6956937
[34] Wang F, Zhou B, Sun H M, Cui A Y, Jiang T, Xu L P, Jiang K, Shang L Y, Hu Z G and Chu J H 2018 Phys. Rev. B 98 245403
[35] Kozielsk.M, Spinolo G and Pollini I 1972 J. Phys. C: Solid State Phys. 5 1253
[36] Xue S Q, Zhang F C, Zhang S L, Wang X Y and Shao T T 2018 Nanomaterials 8 10
[37] Monthoux P, Pines D and Lonzarich G G 2007 Nature 450 1177
[38] Binet F, Duboz J Y, Off J and Scholz F 1999 Phys. Rev. B 60 4715
[39] Imada A, Ozaki S and Adachi S 2002 J. Appl. Phys. 92 1793
[40] Li Z P, Wang T M, Jin C H, Lu Z G, Lian Z, Meng Y Z, Blei M, Gao S Y, Taniguchi T, Watanabe K, Ren T H, Tongay S, Yang L, Smirnov D, Cao T and Shi S F 2019 Nat. Commun. 10 1
[41] Akimov I A, Godde T, Kavokin K V, Yakovlev D R, Reshina, II, Sedova I V, Sorokin S V, Ivanov S V, Kusrayev Y G and Bayer M 2017 Phys. Rev. B 95 8
[42] Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y and Goto T 1998 Appl. Phys. Lett. 73 1038
[43] Tian X Y, Xu Y L, Zhao H M, Qin X B, Nie Y T, Li W, Liu S, Lin Q Q and Cao Q 2020 J. Mater. Chem. C 8 7314
[44] Zhao W Y, Ku Z L, Lv L P, Lin X, Peng Y, Jin Z M, Ma G H and Yao J Q 2019 Chin. Phys. Lett. 36 028401
[45] Ren J H, Liao Q, Huang H, Li Y, Gao T G, Ma X K, Schumacher S, Yao J N, Bai S M and Fu H B 2020 Nano Lett. 20 7550
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[8] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[9] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[10] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[11] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[12] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[13] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[14] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[15] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
No Suggested Reading articles found!