CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Exciton luminescence and many-body effect of monolayer WS2 at room temperature |
Jian-Min Wu(吴建民)1, Li-Hui Li(黎立辉)1, Wei-Hao Zheng(郑玮豪)2, Bi-Yuan Zheng(郑弼元)2, Zhe-Yuan Xu(徐哲元)2, Xue-Hong Zhang(张学红)2, Chen-Guang Zhu(朱晨光)2, Kun Wu(吴琨)1, Chi Zhang(张弛)1, Ying Jiang(蒋英)1, Xiao-Li Zhu(朱小莉)1, and Xiu-Juan Zhuang(庄秀娟)1,† |
1 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China |
|
|
Abstract Monolayer transition metal dichalcogenides favor the formation of a variety of excitonic quasiparticles, and can serve as an ideal material for exploring room-temperature many-body effects in two-dimensional systems. Here, using mechanically exfoliated monolayer WS2 and photoluminescence (PL) spectroscopy, exciton emission peaks are confirmed through temperature-dependent and electric-field-tuned PL spectroscopy. The dependence of exciton concentration on the excitation power density at room temperature is quantitatively analyzed. Exciton concentrations covering four orders of magnitude are divided into three stages. Within the low carrier concentration stage, the system is dominated by excitons, with a small fraction of trions and localized excitons. At the high carrier concentration stage, the localized exciton emission from defects coincides with the emission peak position of trions, resulting in broad spectral characteristics at room temperature.
|
Received: 23 June 2021
Revised: 05 November 2021
Accepted manuscript online:
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
52.70.Kz
|
(Optical (ultraviolet, visible, infrared) measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61635001,52072117,and 51972105). |
Corresponding Authors:
Xiu-Juan Zhuang,E-mail:zhuangxj@hnu.edu.cn
E-mail: zhuangxj@hnu.edu.cn
|
About author: 2021-11-10 |
Cite this article:
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟) Exciton luminescence and many-body effect of monolayer WS2 at room temperature 2022 Chin. Phys. B 31 057803
|
[1] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 [2] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136085 [3] Ramasubramaniam A 2012 Phys. Rev. B 86 115409 [4] Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Commun. 4 1474 [5] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318 [6] You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R and Heinz T F 2015 Nat. Phys. 11 477 [7] He Z, Xu W, Zhou Y, Wang X, Sheng Y, Rong Y, Guo S, Zhang J, Smith J M and Warner J H 2016 ACS Nano 10 2176 [8] Singh A, Moody G, Wu S, Wu Y, Ghimire N J, Yan J, Mandrus D G, Xu X and Li X 2014 Phys. Rev. Lett. 112 216804 [9] Li L, Zheng W, Ma C, Zhao H, Jiang F, Ouyang Y, Zheng B, Fu X, Fan P, Zheng M, Li Y, Xiao Y, Cao W, Jiang Y, Zhu X, Zhuang X and Pan A 2020 Nano Lett. 20 3361 [10] Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218 [11] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802 [12] He K, Kumar N, Zhao L, Wang Z, Mak K F, Zhao H and Shan J 2014 Phys. Rev. Lett. 113 026803 [13] Xiao K, Yan T, Liu Q, Yang S, Kan C, Duan R, Liu Z and Cui X 2021 J. Phys. Chem. Lett. 12 2555 [14] Lin T N, Santiago S R M, Caigas S P, Yuan C T, Lin T Y, Shen J L and Chen Y F 2019 npj 2D Mater. Appl. 3 46 [15] Carmiggelt J J, Borst M and van der Sar T 2020 Sci. Rep. 10 17389 [16] Feierabend M, Brem S, Ekman A and Malic E 2020 2D Mater. 8 015013 [17] Zhou Y, Scuri G, Wild D S, High A A, Dibos A, Jauregui L A, Shu C, De Greve K, Pistunova K, Joe A Y, Taniguchi T, Watanabe K, Kim P, Lukin M D and Park H 2017 Nat. Nanotech. 12 856 [18] Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214 [19] Selig M, Berghäuser G, Richter M, Bratschitsch R, Knorr A and Malic E 2018 2D Mater. 5 035017 [20] Chow P K, Jacobs-Gedrim R B, Gao J, Lu T M and Koratkar N 2015 ACS Nano 9 1520 [21] Ayari S, Smiri A, Hichri A, Jaziri S and Amand T 2018 Phys. Rev. B 98 205430 [22] Grim J Q, Christodoulou S, Di Stasio F, Krahne R, Cingolani R, Manna L and Moreels I 2014 Nat. Nanotech. 9 891 [23] Wen W, Wu L and Yu T 2020 ACS Mater. Lett. 2 1328 [24] Dwedari M, Brem S, Feierabend M and Malic E 2019 Phys. Rev. Mater. 3 074004 [25] Kim M S, Yun S J, Lee Y, Seo C, Han G H, Kim K K, Lee Y H and Kim J 2016 ACS Nano 10 2399 [26] Plechinger G, Nagler P, Kraus J, Paradiso N, Strunk C, Schüller C and Korn T 2015 Physica Status Solidi (RRL)-Rapid Research Letters 9 457 [27] Okada M, Miyauchi Y, Matsuda K, Taniguchi T, Watanabe K, Shinohara H and Kitaura R 2017 Sci. Rep. 7 322 [28] Barbone M, Montblanch A R, Kara D M, Palacios-Berraquero C, Cadore A R, De Fazio D, Pingault B, Mostaani E, Li H, Chen B, Watanabe K, Taniguchi T, Tongay S, Wang G, Ferrari A C and Atature M 2018 Nat. Commun. 9 3721 [29] Siviniant J, Scalbert D, Kavokin A V, Coquillat D and Lascaray J P 1999 Phys. Rev. B 59 1602 [30] Shang J, Shen X, Cong C, Peimyoo N, Cao B, Eginligil M and Yu T 2015 ACS Nano 9 647 [31] Mitioglu A A, Plochocka P, Jadczak J N, Escoffier W, Rikken G L J A, Kulyuk L and Maude D K 2013 Phys. Rev. B 88 245403 [32] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207 [33] Peimyoo N, Yang W, Shang J, Shen X, Wang Y and Yu T 2014 ACS Nano 8 11320 [34] Chernikov A, van der Zande A M, Hill H M, Rigosi A F, Velauthapillai A, Hone J and Heinz T F 2015 Phys. Rev. Lett. 115 126802 [35] Phillips R T, Lovering D J, Denton G J and Smith G W 1992 Phys. Rev. B 45 4308 [36] Vietmeyer F, Frantsuzov P A, Janko B and Kuno M 2011 Phys. Rev. B 83 115319 [37] Wei S, Lin M L, Tan Q H, Qiao X F and Tan P H 2016 2D Mater. 3 025016 [38] Zheng W, Zheng B, Jiang Y, Yan C, Chen S, Liu Y, Sun X, Zhu C, Qi Z, Yang T, Huang W, Fan P, Jiang F, Wang X, Zhuang X, Li D, Li Z, Xie W, Ji W, Wang X and Pan A 2019 Nano Lett. 19 7217 [39] Fan P, Zheng B Y, Sun X X, Zheng W H, Xu Z Y, Ge C H, Liu Y, Zhuang X J, Li D, Wang X, Zhu X L, Jiang Y and Pan A L 2019 J. Phys. Chem. Lett. 10 3763 [40] Mouri S, Miyauchi Y, Toh M, Zhao W, Eda G and Matsuda K 2014 Phys. Rev. B 90 155449 [41] Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Phys. Rev. B 89 125427 [42] Salehzadeh O, Tran N H, Liu X, Shih I and Mi Z 2014 Nano Lett. 14 4125 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|