Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017101    DOI: 10.1088/1674-1056/ac0526
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4

Peng-Yu Zhou(周鹏宇)1,†, Xiu-Ming Dou(窦秀明)2, Bao-Quan Sun(孙宝权)2, Ren-Qin Dou(窦仁琴)3, Qing-Li Zhang(张庆礼)3, Bao Liu(刘鲍)1, Pu-Geng Hou(侯朴赓)1, Kai-Lin Chi(迟凯粼)1, and Kun Ding(丁琨)2
1 School of Science, Northeast Electric Power University, Jilin 132012, China;
2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
3 Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Luminescent properties of Tm3+-doped GdYTaO4 are studied for exploring their potential applications in temperature and pressure sensing. Two main emission peaks from 3H4 $\to$ 3H6 transition of Tm3+ are investigated. Intensity ratio between the two peaks evolves exponentially with temperature and has a highest sensitivity of 0.014 K-1 at 32 K. The energy difference between the two peaks increases linearly with pressure increasing at a rate of 0.38 meV/GPa. Intensity ratio between the two peaks and their emission lifetimes are also analyzed for discussing the pressure-induced variation of the sample structure. Moreover, Raman spectra recorded under high pressures indicate an isostructural phase transition of GdYTaO4 occurring at 4.46 GPa.
Keywords:  rare-earth tantalate      photoluminescence      high pressure      Raman  
Received:  20 March 2021      Revised:  07 May 2021      Accepted manuscript online:  26 May 2021
PACS:  71.20.Eh (Rare earth metals and alloys)  
  78.55.-m (Photoluminescence, properties and materials)  
  62.50.-p (High-pressure effects in solids and liquids)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804047) and the Science and Technology Development Program of Jilin City, China (Grant No. 201831733).
Corresponding Authors:  Peng-Yu Zhou     E-mail:  20162715@neepu.edu.cn

Cite this article: 

Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨) Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4 2022 Chin. Phys. B 31 017101

[1] Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H and Chen B J 2017 Acta Phys. Sin. 66 100201 (in Chinese)
[2] Dai L, Liu C R, Han X B, Wang L P, Shao Y and Xu Y H 2018 Chin. Phys. B 27 114217
[3] Nyk M, Kumar R, Ohulchanskyy T Y, Bergey E J and Prasad P N 2008 Nano Lett. 8 3834
[4] Zheng W, Zhu H M, Li R F, Tu D T, Liu Y S, Luo W Q and Chen X Y 2012 Phys. Chem. Chem. Phys. 14 6974
[5] Li J, Zhang J H, Zhang X, Hao Z D and Luo Y S 2014 J. Alloys Compd. 583 96
[6] Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Cheng L and Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese)
[7] Quintanilla M, Cantelar E, Cussó F, Barreda-Argüeso J A, González J, Valiente R and Rodríguez F 2015 Opt. Mater. Express 5 1168
[8] Ren X K, Du C L, Li C B, Yu L, Zhao J Q and Ruan S C 2016 Chin. Phys. Lett. 33 114203
[9] Dou R Q, Zhang Q L, Gao J Y, Chen Y Z, Ding S J, Peng F, Liu W P and Sun D L 2018 Crystals 8 55
[10] Dou R Q, Zhang Q L, Liu W P, Luo J Q, Wang X F, Ding S J and Sun D L 2015 Opt. Mater. 48 80
[11] Nakauchi D, Koshimizu M, Okada G and Yanagida T 2017 Radiat. Meas. 106 129
[12] Peng F, Yang H J, Zhang Q L, Luo J Q, Sun D L, Liu W P, Sun G H, Dou R Q, Wang X F and Xing X 2015 Opt. Mater. Express 5 2536
[13] Yang H J, Peng F, Zhang Q L, Guo C X, Shi C S, Liu W P, Sun G H, Zhao Y P, Zhang D M, Sun D L, Yin S T, Gu M and Mao R H 2014 Cryst. Eng. Comm. 16 2480
[14] Wu P, Zhou Y X, Wu F S, Hu M Y, Chong X Y and Feng J 2019 J. Am. Ceram. Soc. 102 7656
[15] Klotz S, Chervin J C, Munsch P and Le March G 2009 J. Phys. D: Appl. Phys. 42 075413
[16] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[17] Li D Y, Wang Y X, Zhang X R, Yang K, Liu L and Song Y L 2012 Opt. Commun. 285 1925
[18] Tiseanu C, Lupei A and Lupei V 1995 J. Phys.: Condens. Matter 7 8477
[19] Wamsley P R and Bray K L 1994 J. Lumin. 60-61 188
[20] Barnett J D, Block S and Piermarini G J 1973 Rev. Sci. Instrum. 44 1
[21] Siqueira K P F and Carvalho G B 2011 Dalton Trans. 40 9454
[22] Feng J, Shian S, Xiao B and Clarke D R 2014 Phys. Rev. B 90 094102
[23] Blasse G 1973 J. Solid State Chem. 7 169
[24] Long Y W, Yang L X, Yu Y, Li F Y, Yu R C, Ding S, Liu Y L and Jin C Q 2006 Phys. Rev. B 74 054110
[25] Pellicer-Porres J, Garg A B, Vázquez-Socorro D, Martínez-García D, Popescu C and Errandonea D 2017 J. Solid State Chem. 251 14
[26] Garg A B, Rao R, Errandonea D, Pellicer-Porres J, Martinez-Garcia D and Popescu C 2020 J. Appl. Phys. 127 175905
[27] Hou J W, Zhou R, Zhang J W, Wang Z P, Zhang Z M and Ding Z J 2017 J. Phys. Chem. C 121 14787
[28] Bandiello E, Errandonea D, Piccinelli F, Bettinelli M, Díaz-Anichtchenko D and Popescu C 2019 J. Phys. Chem. C 123 30732
[29] Gonzalez-Platas J, Rodriguez-Hernandez P, Muñoz A, Rodríguez-Mendoza U R, Nènert G and Errandonea D 2019 Crystals 9 643
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[4] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[8] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[11] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!