Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 067801    DOI: 10.1088/1674-1056/ac4235
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications

Zein K Heiba1,†, Mohamed Bakr Mohamed1,2, Noura M Farag1, and Ali Badawi3,4,‡
1 Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt;
2 Physics Department, Faculty of Science, Taibah University, Al-Madina al Munawarah, Saudi Arabia;
3 Department of Physics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia;
4 Department of Physics, University College of Turabah, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
Abstract  The (1-x)NiCo2O4/xPbS (0≤ x≤ 0.2) nanocomposite samples are synthesized using the hydrothermal and thermolysis procedures. The different phases developed in the obtained nanocomposite samples are accurately determined using the x-ray diffraction technique equipped with a line-detector. The percentage of the formed phases (NiCo2O4 (NCO), PbS, PbSO4), structural and microstructure parameters are determined using Rietveld quantitative phase analysis. The transmission electron microscope (TEM) images and Rietveld analysis reveal almost isotropic particle size in the nano range with a very narrow size distribution. The obtained phase percentage of PbS and PbSO4 are smaller than nominated values (x) suggesting dissolving of some Pb and S ions into NCO which is then confirmed by the analysis of Fourier-transform infrared (FTIR) spectra of nanocomposite samples. The absorption spectra are modified upon doping NCO with PbS. The optical band gaps of the nanocomposites increase as the amount of PbS augments. The effect of alloying on extinction coefficient, refractive index, dielectric constant, optical conductivity, the intensity, and emitted color from the photoluminescence of the nanocomposite samples are also studied. The refractive index value of NCO and NCO-PbS nanocomposite samples exhibit normal dispersions. The photoluminescent measurements reveal that the NCO-PbS nanocomposites can emit a violet color. The improvement in the values of the nonlinear optical (NLO) parameters of pristine NCO at high frequencies or the nanocomposite samples at low frequencies, are made them used in NLO photonic devices.
Keywords:  NiCo2O4 and PbS      nanocomposite      FTIR      optical      photoluminescence  
Received:  13 November 2021      Revised:  08 December 2021      Accepted manuscript online:  15 December 2021
PACS:  78.67.Sc (Nanoaggregates; nanocomposites)  
  74.25.Gz (Optical properties)  
  78.55.-m (Photoluminescence, properties and materials)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Fund: The authors thank the support of Taif University Researchers Supporting Project Number TURSP-2020/12, Taif University, Taif, Saudi Arabia.
Corresponding Authors:  Zein K Heiba, Ali Badawi     E-mail:  zein_kh@yahoo.com;daraghmeh@tu.edu.sa

Cite this article: 

Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications 2022 Chin. Phys. B 31 067801

[1] Heiba Z K, Mohamed M B, Farag N M and Ahmed S I 2021 Appl. Phys. A 127 1
[2] Jin C, Lu F, Cao X, Yang Z and Yang R 2013 J. Mater. Chem. 1 12170
[3] Ganeev R A, Shuklov I A, Zvyagin A I, Dyomkin D V, Bocharova S I, Popov V S, Toknova V F, Lizunova A A, Ovchinnikov O V and Razumov V F 2021 Opt. Mater. 121 111499
[4] Ge S S, Zhang Q X, Wang X T, Li H, Zhang L and Wei Q Y 2015 Surf. Coat. Technol. 283 172
[5] Heiba Z K, Mohamed M B, El-naggar A M and Altowairqi Y 2021 Chem. Phys. Lett. 784 139110
[6] Chen M, Zhao J, Wang Y, Huang X and Xu Y 2021 J. Hazard. Mater. 419 126515
[7] Kim Il H, Lee H, Yu A, Jeong J H, Lee Y, Kim M H, Lee C and Kim Y D 2018 Nanotechnology 29 175702
[8] Heiba Z K, Deyab M A, Mohamed M B, Farag N M, El-naggar A M and Plaisier J R 2021 Appl. Phys. A 127 1
[9] Rahulan K M, Padmanathan N, Philip R and Balamurugan S and Kanakam C C 2013 Appl. Surf. Sci. 282 656
[10] Mohanty B, Chattopadhyay A and Nayak J 2021 J. Alloys Compd. 850 156735
[11] Macias J D, Bacelis-Martinez R D, Ruiz-Gomez M A, Bante-Guerra J, Villafan-Vidales H Il, Rodriguez-Gattorno G, Romero-Paredes H and Alvarado-Gil J J 2021 Int. J. Hydrog. 46 0632
[12] Ullah K, Meng Z D, Ye S, Zhu L and Oh W C 2014 J. Ind. Eng. Chem. 20 1035
[13] Tan J, Hu J, Ren J, Peng J, Liu C, Song Y and Zhang Y 2020 Chin. Chem. Lett. 31 2103
[14] Cui W, Qi Y, Liu L, Rana D, Hu J and Liang Y 2012 Prog. Nat. Sci. 22 120
[15] Tauc 1972 The Optical Properties of Solid, Abeles A (Ed.) (Amsterdam: North Holland) p. 277
[16] Heiba Z K, Mohamed M B, Farag N M, El-naggar AM and Altowairqi Y 2021 J. Mater. Sci.: Mater. Electron. 32 27121
[17] Rodríguez-Carvajal J 1993 Physica B 192 55
[18] Zhang K, Zhen C, Wei W, Guo W, Tang G, Ma L, Houa D and Wu X 2017 RSC Adv. 7 36026
[19] Jr C F W, Exarhos G J and Owings R R 2004 J. Appl. Phys. 95 5435
[20] Roginskaya Y E, Morozova O V, Lubnin E N, Ulitina Y E, Lopukhova G V and Trasatti S 1997 Langmuir 13 4621
[21] Zhao Y, Zou J and Shi W 2005 Mater. Sci. Eng. B 121 20
[22] Suganya M and Balu A R 2017 Mater. Sci. Poland 35 322
[23] Mozafari M, Moztarzadeh F and Tahriri M 2011 Adv. Appl. Ceram. 110 30
[24] Vigneshwaran P, Kandiban M, Kumar N S, Venkatachalam V, Jayavel R and Potheher I V 2016 J. Mater. Sci.: Mater. Electron. 27 4653
[25] Tharayil N J, Raveendran R and Vaidyan A V 2008 Ind. J. Pure Appl. Phys. 46 47
[26] Umeshbabu E, Rajeshkhanna G, Justin P and Rao G R 2015 Mater. Chem. Phys. 165 235
[27] Hu L, Wu L, Liao M Y, Hu X and Fang X S 2012 Adv. Funct. Mater. 22 998
[28] Turgut G and Metall E 2014 Mater. Trans. A 45 3675
[29] Dawood M S, Elmosalami T A and Desoky W M 2021 Opt. Mater. 117 111101
[30] Mohamed S H and Drese R 2006 Thin Solid Films 513 64
[31] Suma G R, Subramani N K, Shilpa K N, Sachhidananda S and Satyanarayana S V 2017 J. Mater. Sci.: Mater. Electron. 28 10707
[32] Heiba Z K, Mohamed M B and Imam N G 2017 J. Supercond. Nov. Magn. 30 3123
[33] Li M, Wang X, Ruan H, Zhang Q Wu, Z, Liu Y, Lu Z and Hai J 2018 J. Alloys Compd. 768 399
[34] Rattana T, Suwanboon S, Amornpitoksuk P, Haidou A and Limsuwan P 2009 J. Alloys Compd. 480 603
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[4] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[5] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[6] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[7] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[8] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[9] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[10] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[11] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[12] Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection
Ya-Zheng Tao(陶雅正), Hong-Bo Jin(金洪波), and Yue-Liang Wu(吴岳良). Chin. Phys. B, 2023, 32(2): 024212.
[13] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[14] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[15] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
No Suggested Reading articles found!