Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027502    DOI: 10.1088/1674-1056/ac1412
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution

Hafiz T. Ali1, M. Ramzan2, M Imran Arshad2, Nicola A. Morley3, M. Hassan Abbas2, Mohammad Yusuf4, Atta Ur Rehman2, Khalid Mahmood2, Adnan Ali2, Nasir Amin2, and M. Ajaz-un-Nabi2,†
1 Department of Mechanical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia;
2 Department of Physics, Government College University, Faisalabad, Pakistan;
3 Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mapping St., Sheffield, S1 3JD, UK;
4 Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
Abstract  We investigate the impact of Ni insertion on the structural, optical, and magnetic properties of Ba0.8La0.2Fe12-xNixO19 hexaferrites (Ni substituted La-BaM hexaferrites). Samples were prepared using the conventional co-precipitation method and sintered at 1000℃ for 4 hours to assist the crystallization process. An analysis of the structure of the samples was carried out using an x-ray diffraction (XRD) spectrometer. The M-type hexagonal structure of all the samples was confirmed using XRD spectra. The lattice parameters a and c were found to be in the ranges of 5.8925 ±0.001 nm-5.8952 ±0.001 nm and 23.2123 ±0.001 nm-23.2219 ±0.001 nm, respectively. The M-type hexagonal nature of the prepared samples was also indicated by the presence of corresponding FT-IR bands and Raman modes in the FT-IR and Raman spectra, respectively. EDX results confirmed the successful synthesis of the samples according to the required stoichiometric ratio. A UV-vis spectrometer was used to record the absorption spectra of the prepared samples in the wavelength range of 200 nm-1100 nm. The optical energy bandgap of the samples was found to be in the range of 1.21 eV-3.39 eV. The M-H loops of the samples were measured at room temperature at an applied magnetic field range of 0 kOe-60 kOe. A high saturation magnetization of 99.92 emu/g was recorded in the sample with x=0 at a microwave operating frequency of 22.2 GHz. This high value of saturation magnetization is due to the substitution of La3+ ions at the spin-up (12k, 2a, and 2b) sites. The Ni substitution is proven to be a potential candidate for the tuning of the optical and magnetic parameters of M-type hexaferrites. Therefore, we suggest that the prepared samples are suitable for use in magneto-optic applications.
Keywords:  M-type hexaferrite      nanostructured materials      magnetic properties      optical properties  
Received:  04 April 2021      Revised:  12 July 2021      Accepted manuscript online:  14 July 2021
PACS:  75.50.-y (Studies of specific magnetic materials)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the Taif University Researchers Supporting Project number (TURSP-2020/293), Taif University, Taif, Saudi Arabia.
Corresponding Authors:  M. Ajaz-un-Nabi     E-mail:  majazunnabi@gcuf.edu.pk

Cite this article: 

Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution 2022 Chin. Phys. B 31 027502

[1] Jayakumar T, Raja C R and Arumugam S 2020 J. Mater. Sci. Mater. Electron. 31 16308
[2] Akbarzadeh A, Samiei M and Davaran S 2012 Nanoscale Res. Lett. 7 1
[3] Waqar M, Rafiq M A, Mirza T A, Khalid F A, Khaliq A, Anwar M S and Saleem M 2018 Appl. Phys. A 124 1
[4] Ramzan M, Arshad M I, Sharif M, Mahmood K, Ali A, Amin N and Ajaz-un-Nabi M 2019 J. Supercond. Nov. Magn. 32 3517
[5] Almessiere M A, Slimani Y, El Sayed H S and Baykal A 2018 J. Sol-Gel Sci. Technol. 88 628
[6] Singhal S, Garg A N and Chandra K 2005 J. Magn. Magn. Mater. 285 193
[7] Pullar R C 2012 Prog. Mater. Sci. 57 1191
[8] Yasmin N, Yasmin S, Zahid M, Gillani S F, Islam M U, Altaf M and Mirza M 2020 Physica B 581 411950
[9] Cernea M, Greculeasa S G, Radu R, Aldica G, Ganea P, Surdu V A and Costescu R M 2020 J. Alloys Compd. 831 154850
[10] Mitra C, Ram S and Venimadhav A 2012 J. Alloys Compd. 545 225
[11] Li Y, Wang Q and Yang H 2009 Curr. Appl. Phys. 9 1375
[12] Özgür Ü, Alivov Y and Morkoç H 2009 J. Mater. Sci. Mater. Electron. 20 789
[13] Janasi S R, Rodrigues D, Landgraf F J and Emura M 2000 IEEE Transactions on Magnetics 36 3327
[14] Beevers J E, Love C J, Lazarov V K, Cavill S A, Izadkhah H, Vittoria C and Dhesi S S 2018 Appl. Phys. Lett. 112 082401
[15] Baykal A, Auwal I A, Güner S and Sözeri H 2017 J. Magn. Magn. Mater. 430 29
[16] Ramzan M, Arshad M, Amin N, Mahmood K, ALIa A, Sharif M and Ajaz-Un-Nabi M 2019 Dig. J. Nanomater. Bios. 14 849
[17] Ounnunkad S 2006 Solid State Commun. 138 472
[18] Ashiq M N, Ehsan M F, Iqbal M J and Najam-ul-Haq M 2013 J. Magn. Magn. Mater. 332 93
[19] Iqbal M J and Farooq S 2010 J. Alloys Compd. 505 560
[20] Behera P and Ravi S 2019 Solid State Sci. 89 139
[21] Güner S, Auwal I A, Baykal A and Sözeri H 2016 J. Magn. Magn. Mater. 416 261
[22] Sözeri H, Küçük İ L K E R and Özkan H 2011 J. Magn. Magn. Mater. 323 1799
[23] Li C J, Wang B and Wang J N 2012 J. Magn. Magn. Mater. 324 1305
[24] Vinnik D A, Zherebtsov D A, Mashkovtseva L S, Nemrava S, Semisalova A S, Galimov D M and Niewa R 2015 J. Alloys Compd. 628 480
[25] Tang X, Yang Y and Hu K 2009 J. Alloys Compd. 477 488
[26] Ashraf G A, Zhang L, Abbas W and Murtaza G 2019 Curr. Appl. Phys. 19 506
[27] Jamalian M, Ghasemi A and Asl M J P 2015 J. Electron. Mater. 44 2856
[28] Cullity B D 1978 Plane Spacings In Lattice Geometry In Elements of X-Ray Diffraction (Addison-Wesley publishing company Inc.)
[29] El-Sayed S M, Meaz T M, Amer M A and El Shersaby H A 2014 Particul. Sci. Technol. 32 39
[30] Amjad T, Sadiq I, Javaid A B, Riaz S, Naseem S and Nadeem M 2019 J. Alloys Compd. 770 1112
[31] Auwal I A, Baykal A, Guner S, Sertkol M and Sozeri H 2016 J. Magn. Magn. Mater. 409 92
[32] Kaur T, Kumar S, Bhat B H, Want B and Srivastava A K 2015 Appl. Phys. A 119 1531
[33] Kreisel J, Lucazeau G and Vincent H 1998 J. Solid-State Chem. 137 127
[34] Wu C, Yu Z, Yang Y, Sun K, Nie J, Liu Y and Lan Z 2016 J. Alloys Compd. 664 406
[35] Buzinaro M A P, Ferreira N S, Cunha F and Macêdo M A 2016 Ceram. Int. 42 5865
[36] Morel A, Le Breton J M, Kreisel J, Wiesinger G, Kools F and Tenaud P 2002 J. Magn. Magn. Mater. 242-245 1405
[37] Ashraf G A, Zhang L, Abbas W and Murtaza G 2018 Ceram. Int. 44 18678
[38] Aslam A, Razzaq A, Naz S, Amin N, Arshad M I, Nabi M A U and Ur Rehman A 2021 J. Supercond. Nov. Magn. 34 1855
[39] Aslam A, Rehman A U, Amin N, un Nabi M A, ul ain Abdullah Q, Morley N A and Mehmood K 2021 J. Phys. Chem. Solids 154 110080
[40] Karmakar M, Mondal B, Pal M and Mukherjee K 2014 Sensor. Actuat. B:Chem. 190 627
[41] Valero-Luna C, Palomares-Sanchéz S A and Ruíz F 2016 Catal. Today 266 110
[42] Hussain K, Amin N and Arshad M I 2021 Ceram. Int. 47 3401
[43] ALIa I, Amin N, Rehman A, Akhtar M, Fatima M, Mahmood K and Arshad M I 2020 Dig. J. Nanomater. Bios. 15 1
[44] Amin N, Akhtar M, Sabir M, Mahmood K, ALIa A, Mustafa G and Arshad M 2020 J. Ovonic Res. 16 11
[45] Alsmadi A M, Bsoul I, Mahmood S H, Alnawashi G, Prokeš K, Siemensmeyer K and Nakotte H 2013 J. Appl. Phys. 114 243910
[46] Kamzin A S, Rozenbaum V L and Ol'khovik L P 1999 Phys. Solid State 41 433
[47] Afghahi S S S, Jafarian M, Salehi M and Atassi Y 2017 J. Magn. Magn. Mater. 421 340
[48] Liu X, Zhong W, Yang S, Yu Z, Gu B and Du Y 2002 J. Magn. Magn. Mater. 238 207
[49] Liu X, Hernandez-Gomez P, Huang K, Zhou S, Wang Y, Cai X and Ma B 2006 J. Magn. Magn. Mater. 305 524
[50] Rehman A U, Morley N A, Amin N, Arshad M I, un-Nabi M A, Mahmood K and Alzaid M 2020 2020 Ceram. Int. 46 29297
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[3] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[4] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[5] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[6] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[7] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[8] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[9] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[10] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[11] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[12] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[13] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[14] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[15] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
No Suggested Reading articles found!